
Applied Mathematics E-Notes, 23(2023), 316-327 ISSN 1607-2510
Available free at mirror sites of http://www.math.nthu.edu.tw/∼amen/

A Class Of Orthogonal Polynomials Associated With The Legendre

Polynomial∗

Krupanshibahen Narendrabhai Patel†, Bhadreshkumar Indunarayan Dave‡

Received 24 June 2022

Abstract

It is known that the function (1 − 2xt + t2)−1/2 arose from the (electric or gravitational) potential
theory. The series expansion of this function in powers of t generates the coefficients which are well known
as the Legendre polynomials. These polynomials are orthogonal over (−1, 1) with respect to the weight
function unity. The present work incorporates the class {Pn(x;M) : n ∈ N, M ∈ 2N} of orthogonal
polynomials associated with the Legendre polynomial to which it would reduce when M = 2. It is shown
that the polynomial {Pn(x;M)} is a solution of a generalized differential equation. Following this, it is
shown that this class forms an orthogonal set with respect to the weight function xM−2 over the interval
(−1, 1). Among the other properties derived include the Rodrigues formula, generating function relations
and zeros. The graphs of {Pn(x; M)} are plotted using MATLAB program, for the even and odd degree
cases.

1 Introduction

It is known that the Legendre polynomials arise as the coefficients in the power series expansion of electric
or gravitational potential function. If we consider an electric charge q placed on the x-axis at x = a, a < r
(Figure 1), then at the point A, the electrostatic potential V due to the charge q is given by V ∝ q/d,
where d is the length of the segment shown in the Figure 1. From this, we have V = kq/d, k is constant of
proportionality. Since a/r < 1, using cosine rule, we have [7, Ch. 11, p. 552–553]

V =
kq√

r2 + a2 − 2ar cos θ
= kq

(

r2 + a2 − 2ar cos θ
)−1/2

=
kq

r

(

1 +
a2

r2
− 2

(a

r

)

cos θ

)−1/2

.

If a/r = t, cos θ = x, then t < 1, and the function rV/kq assumes the elegant form (1 − 2xt + t2)−1/2 =
F (x, t), say. The function F (x, t) when expanded in power series in powers of t, generates the coefficients
which are nothing but the Legendre polynomials Pn(x). Thus with |t| < 1,

(1 − 2xt + t2)−1/2 =

∞
∑

n=0

Pn(x)tn.

For the case a > r, see [7, Ch. 11, Ex. 11.1.3, p. 561] (also for Linear electric Multipoles and associated
Legendre polynomials see [7, Ch. 11, p. 558]). Among many other physical phenomena, the Legerdre
polynomials are also associated with one dimensional steady-state transport equation and neutron scattering
functions for one-energy group (see [2] for the detailed account).
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Figure 1: Electrostatic potential due to charge q.

The explicit representation of this polynomial is given by [4, p.157]

Pn(x) =

[n/2]
∑

k=0

(−1)k
(

1
2

)

n−k

(n − 2k)! k!
(2x)n−2k.

It satisfies the equation ([3, 4, 5, 6, 7]):

(1 − x2)P ′′
n (x) − 2xP ′

n(x) + n(n + 1)Pn(x) = 0. (1)

In the present work, we propose the class {Pn(x; M)} of even and odd degree polynomials, as follows. For
M ∈ 2N,

PMr(x; M) =

r
∑

k=0

(−1)k
(

1 − 1
M

)

2r−k

k! (r − k)!
(

1 − 1
M

)

r−k

xM(r−k) =

r
∑

k=0

(−1)r−k
(

1 − 1
M

)

r+k

k! (r − k)!
(

1 − 1
M

)

k

xMk, (2)

and

PMr+1(x; M) =

r
∑

k=0

(−1)k
(

1 + 1
M

)

2r−k

k! (r − k)!
(

1 + 1
M

)

r−k

xM(r−k)+1 =

r
∑

k=0

(−1)r−k
(

1 + 1
M

)

r+k

k! (r − k)!
(

1 + 1
M

)

k

xMk+1. (3)

Our objective is to derive certain properties of these polynomials; namely the orthogonality, Rodrigues
formula, generating function relation and zeros.

Note 1. We notice that P2r(x; 2) = P2r(x) when n = 2r whereas P2r+1(x; 2) = P2r+1(x) when n = 2r + 1.

In what follows, we shall use the following notations and definitions ([1, 4]). The generalized factorial
notation:

(a)n =

{

a(a + 1)(a + 2) · · · (a + n − 1), if n ∈ N,
1 if n = 0.

The Gauss hypergeometric function is denoted and defined by ([1, 4])

2F1





a, b; z
c;



 =

∞
∑

n=0

(a)n(b)n

(c)nn!
zn,

where c 6= 0,−1,−2, . . . , and |z| < 1. If either a ∈ Z≤0 or b ∈ Z≤0 or both a, b ∈ Z≤0, then this function will
represent a polynomial in z.
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2 M-Legendre Polynomial

We first show that the polynomials in (2) and (3) are solutions of the equation (cf. (1) for M = 2):

(1 − xM)y′′ − MxM−1y′ + n(n + M − 1)xM−2y = 0. (4)

We follow the method described in [5, Theorem A, p.180] of obtaining the power series solution of the second
order homogeneous ordinary linear differential equation. Here x = 0 is an ordinary point, hence assuming

the power series solution y(x) =
∞
∑

p=0
apx

p along with its derivatives:

y′(x) =

∞
∑

p=1

papx
p−1 and y′′(x) =

∞
∑

p=2

p(p − 1)apx
p−2,

we are led to

a2 = a3 = · · ·aM−1 = 0, aM = −n(n + M − 1)

M(M − 1)
a0, aM+1 = −n(n + M − 1) − M

M(M + 1)
a1

and the recursion formula (cf. [5, eq. (9), p. 179] with M = 2):

ap = −n(n + M − 1) − (p − M)(p − 1)

p(p − 1)
ap−M . (5)

From the equation (5) and the values of ai
′s (i = 2, 3, · · · , M − 1), for k ∈ N we have

aMk+2 = aMk+3 = · · ·aM(k+1)−1 = 0. (6)

If we put p = 2M, 3M, ... successively in (5), then for k ∈ N, we get

aMk =
(−1)k

k!Mk

{

k
∏

s=1

n(n + M − 1) − M(s − 1)(Ms − 1)

Ms − 1

}

a0 (7)

and similarly, putting p = 2M + 1, 3M + 1, ... in (5) successively, we get

aMk+1 =
(−1)k

k!Mk

{

k
∏

s=1

n(n + M − 1) − Ms(M(s − 1) + 1)

Ms + 1

}

a1. (8)

Thus, from (6), (7) and (8), the series solution occurs in the form:

y(x) =

[

a
0
+

∞
∑

k=1

aMk xMk

]

+

[

a
1
x +

∞
∑

k=1

aMk+1 xMk+1

]

. (9)

These are linearly independent solutions of the differential equation (4) since neither series is a constant
multiple of the other [5, p. 178].

When n is not an integer, both series have radii of convergence R = 1. If n = Mr, r ∈ {0}∪ N, then the
first series in (9) terminates and for n = Mr + 1, the second series terminates. With

a0 =
(−1)r

r!

(

1 − 1

M

)

and a1 =
(−1)r

r!

(

1 +
1

M

)

,

we are led to the particular solution of (4) which are the proposed polynomials stated in (2) and (3).
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3 Hypergeometric Function Forms

From first series in (2), we have

PMr(x; M) =
r
∑

k=0

(−1)k
(

1 − 1
M

)

2r

(

1
M − r

)

k
(−r)k

k! r!
(

1
M

− 2r
)

k

(

1 − 1
M

)

r

xM(r−k)

=

(

1 − 1
M

)

2r
xMr

r!
(

1 − 1
M

)

r

2F1





−r, 1
M

− r; x−M

1
M

− 2r;





and from the second series in (2), we have

PMr(x; M) =
(−1)r

(

1− 1
M

)

r

r!

r
∑

k=0

(−r)k

(

r + 1 − 1
M

)

k

k!
(

1 − 1
M

)

k

xMk

=
(−1)r

(

1− 1
M

)

r

r!
2F1





−r, r + 1 − 1
M ; xM

1 − 1
M ;



 .

Similarly, from first series of (3), we get

PMr+1(x; M) =

r
∑

k=0

(−1)2k
(

1 + 1
M

)

2r

(

− 1
M − r

)

k
(−r)k

k! r! (−1)2k
(

− 1
M − 2r

)

k

(

1 + 1
M

)

r

xM(r−k)+1

=

(

1 + 1
M

)

2r
xMr+1

(

1 + 1
M

)

r
r!

2F1





−r, −r − 1
M ; x−M

−2r − 1
M ;





and from the second series,

PMr+1(x; M) =
(−1)r x

(

1 + 1
M

)

r

r!

r
∑

k=0

(−r)k

(

r + 1 + 1
M

)

k

k!
(

1 + 1
M

)

k

xMk

=
(−1)rx

(

1 + 1
M

)

r

r!
2F1





−r, r + 1 + 1
M ; xM

1 + 1
M ;



 .

4 Orthogonality

We now derive the orthogonality of the polynomials Pn(x; M), where n is any non negative integer and
M ∈ 2N.

Theorem 1 For n, m ∈ N ∪ {0} with n 6= m, and M ∈ 2N,

∫ 1

−1

xM−2Pn(x; M)Pm(x; M) dx = 0, (10)

in which n = Mr or Mr + 1, and m = Ms or Ms + 1.

Proof. We use the equation (4) and combine the first two terms to get

[(1 − xM)P ′
n(x; M)]′ + n(n + M − 1)xM−2Pn(x; M) = 0

for Mr = n or Mr + 1 = n. In this, replacing n by m, it becomes

[(1 − xM )P ′
m(x; M)]′ + m(m + M − 1)xM−2Pm(x; M) = 0.
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If we multiply the last two equations by Pm(x; M) and Pn(x; M) respectively, and subtract one from the
other, then we obtain

[(1 − xM )P ′
n(x; M)]′Pm(x; M) + n(n + M − 1)xM−2Pn(x; M)Pm(x; M)

−[(1 − xM)P ′
m(x; M)]′Pn(x; M) − m(m + M − 1)xM−2Pm(x; M)Pn(x; M) = 0.

Now combining the second and fourth terms in this equation and introducing the term (1 − xM)P ′
n(x; M)

P ′
m(x; M), it simplifies to

[

(1 − xM ){P ′
n(x; M)Pm(x; M)− P ′

m(x; M)Pn(x; M)}
]′

+[n(n + M − 1) − m(m + M − 1)] xM−2Pn(x; M)Pm(x; M) = 0.

Integrating this from a to b with respect to x, we have

[

(1 − xM){P ′
n(x; M)Pm(x; M)− P ′

m(x; M)Pn(x; M)}
]b

a

+ [n(n + M − 1) − m(m + M − 1)]

∫ b

a

xM−2Pn(x; M)Pm(x; M)dx = 0.

Here if M is an even positive integer, then the first term vanishes for the choice a = −1 and b = 1. This
leads to the property (10).

5 Rodrigues Formula

We aim at representing PMr(x; M) and PMr+1(x; M) as the rth derivative of certain function. This enables
us to evaluate the integral (10) for m = n.

Theorem 2 There holds the rth derivative representation of PMr(x; M) and PMr+1(x; M) given by

PMr(x; M) =
x

r! M r
D

r
[

xMr−1(xM − 1)r
]

, and PMr+1(x; M) =
1

r! M r
D

r
[

xMr+1(xM − 1)r
]

,

where D = x−M+1 d
dx

and M ∈ N.

Proof. We note that
(

1 − 1
M

)

r+k
(

1 − 1
M

)

k

=

(

1 − 1

M
+ k

)(

1 − 1

M
+ k + 1

)

· · ·
(

1 − 1

M
+ r + k − 1

)

=
1

M r
(M(k + 1) − 1)(M(k + 2) − 1) · · · (M(k + r) − 1). (11)

Now, applying the differential operator: x−M+1 d
dx = D iteratively on xM(k+r)−1, we obtain

DxM(k+r)−1 = (M(k + r) − 1) xM(k+r−1)−1,

D
2xM(k+r)−1 = (M(k + r) − 1)(M(k + r − 1) − 1) xM(k+r−2)−1,

and in general,

D
rxM(k+r)−1 = (M(k + r) − 1)(M(k + r − 1) − 1) · · · (M(k + 1) − 1) xMk−1.

Thus the identity in (11) may be written as

(

1 − 1
M

)

r+k
(

1 − 1
M

)

k

xMk =
x

M r
D

rxM(k+r)−1.
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Using this in (2), we finally obtain

PMr(x; M) =

r
∑

k=0

(−1)r−kx D
rxM(k+r)−1

k!(r − k)! M r

=
x

r! M r
D

r

(

xMr−1
r
∑

k=0

(

r

k

)

(−1)r−kxMk

)

=
x

r! M r
D

r
[

xMr−1(xM − 1)r
]

(12)

which is the Rodrigues formula for PMr(x; M). Similarly,

(

1 + 1
M

)

r+k
(

1 + 1
M

)

k

xMk+1 =
1

M r
D

rxM(k+r)+1.

This in view of (3), leads us to

PMr+1(x; M) =

r
∑

k=0

(−1)r−k
D

rxM(k+r)+1

k!(r − k)! M r

=
1

r! M r
D

r

(

xMr+1
r
∑

k=0

(

r

k

)

(−1)r−kxMk

)

=
1

r! M r
D

r
[

xMr+1(xM − 1)r
]

. (13)

6 Evaluation of the Integral

It is natural to examine the integral in (10) when m = n. In doing this, we employ the Rodrigue’s formula
(12) in the integrand to replace PMr(x; M), and then apply the method of integration by parts r times.

Theorem 3 For M ∈ 2N,

∫ 1

−1

xM−2 (Pn(x; M))
2
dx =















2

2Mr + M − 1
if n = Mr,

2

2Mr + M + 1
if n = Mr + 1.

Proof. With regard to the operator D of preceding section, we adopt the notation S and write

∫ 1

−1

xM−1f(x)dx = S
1

−1
f(x) dx,
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then using the notation gn or g
Mr

, we have

gn = g
Mr

=

∫ 1

−1

xM−2 (PMr(x; M))
2
dx

=

∫ 1

−1

xM−2PMr(x; M)
( x

r! M r
D

r
(

xMr−1(xM − 1)r
)

)

dx

= S
1

−1
x−1PMr(x; M)

x

r! M r
D

r
(

xMr−1(xM − 1)r
)

dx

=
1

r! M r
S

1

−1
PMr(x; M) D

r
(

xMr−1(xM − 1)r
)

dx

=
1

r! M r

[

PMr(x; M) D
r−1

(

xMr−1(xM − 1)r
)]1

−1

− 1

r! M r
S

1

−1
[DPMr(x; M)]

[

D
r−1

(

xMr−1(xM − 1)r
)]

dx

=
1

r! M r
S

1

−1
[DPMr(x; M)]

[

D
r−1

(

xMr−1(xM − 1)r
)]

dx.

Proceeding similarly using the method of integration by parts (r − 1)-times, we finally obtain

g
Mr

=
(−1)r

r! M r
S

1

−1
[DrPMr(x; M)]

[

xMr−1(xM − 1)r
]

dx.

But

D
rPMr(x; M) = D

r

(

r
∑

k=0

(−1)r−k
(

1 − 1
M

)

r+k

k!(r − k)!
(

1 − 1
M

)

k

xMk

)

= D
r

(
(

1 − 1
M

)

2r

r!
(

1 − 1
M

)

r

xMr

)

+ D
r

(

r−1
∑

k=0

(−1)r−k
(

1− 1
M

)

r+k

k!(r − k)!
(

1 − 1
M

)

k

xMk

)

=

(

1 − 1
M

)

2r

r!
(

1 − 1
M

)

r

D
rxMr

=
M r

(

1− 1
M

)

2r
(

1 − 1
M

)

r

,

hence

g
Mr

=
(−1)r

r! M r
S

1

−1

M r
(

1 − 1
M

)

2r
(

1 − 1
M

)

r

(

xMr−1(xM − 1)r
)

dx

=
(−1)r

r!

(

1 − 1
M

)

2r
(

1 − 1
M

)

r

∫
1

−1

xM(r+1)−2 (xM − 1)rdx.

Since M is an even positive integer,

g
Mr

=
2(−1)r

r!

(

1 − 1
M

)

2r
(

1 − 1
M

)

r

∫
1

0

xM(r+1)−2

[

r
∑

k=0

(

r

k

)

(−1)r−kxMk

]

dx

=
2
(

1 − 1
M

)

2r

r!
(

1 − 1
M

)

r

r
∑

k=0

(

r

k

)

(−1)k

[

1

M(r + 1 + k) − 1

]

.

But

1

M(r + 1) − 1

(

r + 1 − 1
M

)

k
(

r + 2 − 1
M

)

k

=
1

M
(

r + 1 − 1
M

)

(

r + 1 − 1
M

) (

r + 1 − 1
M + 1

)

· · ·
(

r + 1 − 1
M + k − 1

)

(

r + 2 − 1
M

) (

r + 2 − 1
M + 1

)

· · ·
(

r + 2 − 1
M + k − 1

)

=
1

M(r + 1 + k) − 1
,
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hence, we have

g
Mr

=
2
(

1− 1
M

)

2r

r!
(

1 − 1
M

)

r

r
∑

k=0

(

r

k

)

(−1)k 1

M(r + 1) − 1

(

r + 1 − 1
M

)

k
(

r + 2 − 1
M

)

k

.

For the sake of simplicity, let us put 1 − 1
M = α, then we find that

g
Mr

=
2 (α)2r

r! (α)r

1

(M(r + 1) − 1)

r
∑

k=0

(−r)k(r + α)k

k! (r + 1 + α)k

.

Here the finite sum represents the function 2F1(−r, r + α; r + 1 + α; 1), hence substituting its value (see [4,
Theorem 18, p.49]), we have

g
Mr

=
2 (α)2r

r! (α)r

1

(M(r + 1) − 1)

Γ(r + 1 + α)Γ(r + 1)

Γ(2r + 1 + α)Γ(1)

=
2 Γ(α + 2r) Γ(α)

r! (Mr + M − 1) Γ(α) Γ(α + r)

(r + α) Γ(r + α) (1)r

(2r + α) Γ(2r + α)

=
2 (r + α)

(Mr + M − 1)(2r + α)

=
2

2Mr + M − 1
.

Finally, we obtain
∫ 1

−1

xM−2 (PMr(x; M))
2
dx =

2

2Mr + M − 1
.

In case of PMr+1(x; M), we have

g
Mr+1

=

∫ 1

−1

xM−2 (PMr+1(x; M))
2
dx

=

∫ 1

−1

xM−2 (PMr+1(x; M))

(

1

r! M r
D

r
(

xMr+1(xM − 1)r
)

)

dx.

Proceeding similarly using the method of integration by parts (r − 1)-times, we finally obtain the value as
stated in the theorem.

Note 2. For M = 2, we get from theorem 3 ([4, eq.(12), p.175]),
∫ 1

−1

(Pn(x))2 dx =
2

2n + 1
.

7 Generating Function Relations

In the following theorem, the generating function relations are obtained.

Theorem 4 If |t| < 1,

∣

∣

∣

∣

4(xt)M

(1 + tM )2

∣

∣

∣

∣

< 1, then

∞
∑

r=0

PMr(x; M)tMr = (1 + tM )
1

M
−1

2F1





1
2 − 1

2M , 1 − 1
2M ;

4(xt)M

(1 + tM)2

1 − 1
M ;



 ,

and

∞
∑

r=0

PMr+1(x; M)tMr = xt
(

1 + tM
)−1− 1

M

2F1









1
2 + 1

2M , 1 + 1
2M ;

4(xt)M

(1 + tM )2

1 + 1
M ;









.
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Proof. We begin with

∞
∑

r=0

PMr(x; M)tMr =

∞
∑

r=0

r
∑

k=0

(−1)k
(

1 − 1
M

)

2r−k

k!(r − k)!
(

1 − 1
M

)

r−k

xM(r−k)tMr

=

∞
∑

r=0

∞
∑

k=0

(−1)k
(

1 − 1
M

)

2r+k

k! r!
(

1 − 1
M

)

r

xMrtM(r+k)

=

∞
∑

r=0

(1 − 1
M )2r

(1 − 1
M )r r!

(xt)Mr
∞
∑

k=0

(−1)k(1 − 1
M + 2r)k

k!
tMk.

As before, taking (1 − 1
M

) = α and assuming |t| < 1 and

∣

∣

∣

∣

4(xt)M

(1 + tM )2

∣

∣

∣

∣

< 1, we have

∞
∑

r=0

PMr(x; M)tMr =

∞
∑

r=0

(α)2r

(α)r r!
(xt)Mr

∞
∑

k=0

(−1)k(α + 2r)k

k!
tMk

=
∞
∑

r=0

22r
(

α
2

)

r

(

α
2 + 1

2

)

r

(α)r r!
(xt)Mr(1 + tM )−α−2r

= (1 + tM )−α
∞
∑

r=0

(

α
2

)

r

(

α
2

+ 1
2

)

r

(α)r r!

4r(xt)Mr

(1 + tM )2r

= (1 + tM )
1

M
−1

2F1









1
2
− 1

2M
, 1 − 1

2M
;

4(xt)M

(1 + tM)2

1 − 1
M

;









,

which is first generating function relation. For the odd degree polynomial, we assume |t| < 1, and consider

∞
∑

r=0

PMr+1(x; M)tMr+1 =

∞
∑

r=0

r
∑

k=0

(−1)k
(

1 + 1
M

)

2r−k

k! (r − k)!
(

1 + 1
M

)

r−k

xM(r−k)+1 tMr+1

=
∞
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∞
∑
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(−1)k
(

1 + 1
M

)

2r+k

k! r!
(

1 + 1
M

)

r

xMr+1 tM(r+k)+1

=

∞
∑

r=0

∞
∑

k=0

(−1)k
(

1 + 1
M

)

2r

(

1 + 1
M + 2r

)

k

k! r!
(

1 + 1
M

)

r

(xt)Mr+1 tMk

=

∞
∑
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(

1 + 1
M

)

2r
(xt)Mr+1

r!
(

1 + 1
M

)

r

∞
∑

k=0

(−1)k
(

1 + 1
M + 2r

)

k

k!
tMk

=

∞
∑

r=0

(

1 + 1
M

)

2r
(xt)Mr+1

r!
(

1 + 1
M

)

r

(

1 + tM
)−1− 1

M
−2r

= xt
(

1 + tM
)−1− 1

M

∞
∑

r=0

22r
(

1
2 + 1

2M

)

r

(

1 + 1
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)

r

r!
(

1 + 1
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)

r

(xt)Mr

(1 + tM )
2r .

Finally, assuming

∣

∣

∣

∣

4(xt)M

(1 + tM )2

∣

∣

∣

∣

< 1, we obtain the second generating function relation of the theorem.

8 MATLAB Programming to Compute Zeros

It is quite natural to ask: how one can find the zeros? To answer this, we provide here the MATLAB
platform for computing zeros of Pn(x; M) for n = Mr or n = Mr + 1.
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1 b = input('If the degree of polynomial is odd then enter 1 else 2:');

2 r= input('Enter the value of r:');

3 m= input('Enter the value of M:');

4 if b==2

5 t = 1 − 1/m;

6 p1=1;

7 for k= 1:r

8 p1=p1*(t+k−1);

9 end

10 f(1)=p1*(−1)ˆr/gamma(r+1);

11 for k=1:r

12 a = (−1)ˆk *gamma(r+1−k)* gamma(k+1);

13 q1=1;

14 for i=1:k

15 q1=q1*(t+r+i−1)/(t+i−1);

16 end

17 f(k+1)=(p1*q1)/a;

18 end

19 for i=1:r

20 g((i−1)*m+1)=f(i);

21 for j=2:m

22 g((i−1)*m+j)=0;

23 end

24 end

25 g(r*m+1)=f(r+1);

26 prm=flip(g)

27 x=roots(prm)

28 else

29 t = 1 + 1/m;

30 p1=1;

31 for k= 1:r

32 p1=p1*(t+k−1);

33 end

34 f(1)=p1*(−1)ˆr/gamma(r+1);

35 for k=1:r

36 a = (−1)ˆk *gamma(r+1−k)* gamma(k+1);

37 q1=1;

38 for i=1:k

39 q1=q1*(t+r+i−1)/(t+i−1);

40 end

41 f(k+1)=(p1*q1)/a;

42 end

43 g(1)=0;

44 for i=1:r

45 g((i−1)*m+2)=f(i);

46 for j=3:m+1

47 g((i−1)*m+j)=0;

48 end

49 end

50 g(r*m+2)=f(r+1);

51 prm1=flip(g)

52 x=roots(prm1)

53 end

Example 1 This program is illustrated by choosing r = 2 and M = 4 for both even and odd cases. The

zeros of P8(x; 4) are

−0.9360 + 0.0000i 0.0000− 0.9360i
0.9360 + 0.0000i 0.0000 + 0.9360i
0.6381 + 0.0000i 0.0000 + 0.6381i

−0.6381 + 0.0000i 0.0000− 0.6381i
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and the zeros of P9(x; 4) are

0.9476 + 0.0000i −0.9476 + 0.0000i 0.0000 + 0.0000i
0.7089 + 0.0000i −0.7089 + 0.0000i 0.0000 + 0.9476i
0.0000 + 0.7089i 0.0000− 0.7089i 0.0000− 0.9476i

We observe that P8(x; 4) has four real zeros and four complex zeros and P9(x; 4) has five real zeros and
four complex zeros; unlike the nature of zeros of the Legendre polynomial which are all real.

9 Graphical Behavior

It is well known that the graphs of Pn(x), for n = 0, 1, 2, . . . intersect the x-axis between x = −1 and x = 1
(see Figure 2). Hence, it would be interesting to examine the graphs of PMr(x; M) and PMr+1(x; M) for
r = 0, 1, 2, . . . and for fixed M. In Figure 3, the graphs are plotted for M = 4 and r = 0, 1, 2. Since, the zeros
of PMr(x; M) and PMr+1(x; M) for M = 4, 6, . . . are not all real, hence the observation is that for these
values of M , not all the graphs will show the intersections with the x-axis.

Figure 2: Pn(x; 2)

Figure 3: Pn(x; 4)

9.1 Observation

From Figure 3, it may be seen that the graph of P8 intersects x-axis 4 times whereas the graph of P9 intersects
x-axis 5 times (Example 1). We further observe that the graphs of even degree polynomials are symmetric
about y-axis whereas the graphs of the odd degree polynomials are symmetric about the origin.
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