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Abstract

Intensive studies aiming to extend the gamma and beta functions and to establish some properties for
these extensions have been recently carried out. The fundamental purpose of this paper is to investigate
some inequalities for a class of Gauss hypergeometric functions when investing the discrete Chebychev
inequality.

1 Introduction

Recently, the gamma and beta functions attracted many researchers by virtue of their nice properties and
interesting applications. Several generalizations and extensions for these special functions have been inves-
tigated by many researchers, see [3, 4, 11, 16, 17, 18] for instance and the related references cited therein.
In this direction, the hypergeometric functions have been introduced in literature and intensive studies
related to these new functions and their generalizations have been undertaken.
The Gauss hypergeometric function (GHF) was defined in [18, p.1]

2F1(a, b; c; z) :=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, <e(a) > 0, <e(b) > 0, <e(c) > 0, (1)

provided that this series is convergent. Here, the notation (λ)n, for <e(λ) > 0, refers to the Pochhammer
symbol defined by

(λ)n := λ(λ+ 1)...(λ+ n− 1) =
Γ(λ+ n)

Γ(λ)
and (λ)0 = 1,

where Γ(x) :=
∫∞

0
tx−1e−tdt, <e(x) > 0, is the standard gamma function. The function (GHF) satisfies the

following hypergeometric differential equation [18, p.2]:

z(1− z)d
2y

d2z
+
(
c− (a+ b+ 1)z

)dy
dz
− aby = 0, with y = y(z) =2F1(a, b; c; z).

The (GHF) can be written in terms of the classical beta function as follows [3]

2F1(a, b; c; z) :=
1

B(b, c− b)

∞∑
n=0

(a)nB(b+ n, c− b) z
n

n!
, (2)

provided that 0 < <e(b) < <e(c), where B(x, y) :=
∫ 1

0
tx−1 (1 − t)y−1 dt, <e(x) > 0,<e(y) > 0, is the

standard beta function. The formula (2) was deduced from the following integral representation, [18, p.20]

2F1(a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a dt, |z| ≤ 1. (3)
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The confluent hypergeometric function (CHF), also called Kummer’s function, was defined in [9] by the
following formula

1F1(b; c; z) :=

∞∑
n=0

(b)n
(c)n

zn

n!
, <e(b) > 0, <e(c) > 0, (4)

provided that this series is convergent. It can be written in terms of the classical beta function as follows [1,
p.504]

1F1(b; c; z) =
1

B(b, c− b)

∞∑
n=0

B(b+ n, c− b) z
n

n!
, 0 < <e(b) < <e(c). (5)

In integral form we have, [11]

1F1(b; c; z) =
1

B(b, c− b)

∫ 1

0

ub−1(1− u)c−b−1ezu du. (6)

The definition of the confluent hypergeometric function given by (4) permits Özergin et al. to introduce in
[11] the following generalized beta function

B(α,β)
p (x, y) :=

∫ 1

0

tx−1(1− t)y−1
1F1

(
α;β;

−p
t(1− t)

)
dt, (7)

where <e(α) > 0,<e(β) > 0,<e(p) > 0.
Based on (7), Özergin et al. defined in [11] the generalized Gauss hypergeometric function (GGHF) and

the generalized confluent hypergeometric function (GCHF), respectively, as follows

2F
(α,β;p)
1 (a, b; c; z) :=

1

B(b, c− b)

∞∑
n=0

(a)nB
(α,β)
p (b+ n, c− b) z

n

n!
, (8)

1F
(α,β;p)
1 (b; c; z) :=

1

B(b, c− b)

∞∑
n=0

B(α,β)
p (b+ n, c− b) z

n

n!
. (9)

It is clear that

2F
(α,β;0)
1 (a, b; c; z) = 2F1(a, b; c; z) and 1F

(α,β;0)
1 (b; c; z) = 1F1(b; c; z). (10)

In [11], the authors gave integral representations of (GGHF) and (GCHF) as follows

2F
(α,β;p)
1 (a, b; c; z) =

1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1 (1− zt)−a 1F1

(
α;β;

−p
t(1− t)

)
dt, |z| ≤ 1, (11)

1F
(α,β;p)
1 (b; c; z) =

1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1 ezt 1F1

(
α;β;

−p
t(1− t)

)
dt. (12)

The following remark will be of interest in the sequel.

Remark 1 All the previous series as well as their related improper integrals are uniformly convergent. This
implies that, whenever we have an infinite summation with one of these improper integrals then the order
of the integral with the summation can be interchanged. We can also differentiate and take the limit under
these infinite summations or improper integrals.

The computation of confluent hypergeometric functions and Gauss hypergeometric functions is important
in a wide variety of areas such as photon scattering from atoms [6], networks [19], Coulomb wave functions
[5], binary stars [14], non-Newtonian fluids [20], and more. In [10, 13], the authors consider the general
solution of the stationary state Schrödinger equation in terms of confluent hypergeometric functions and in
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[8, 15], these class of functions are used in a discussion of the bound and continuum states of the hydrogen
atom. In [2], Andrews provides an expanded survey on some significant applications of basic hypergeometric
functions to theory of partitions, number theory, finite vector spaces, combinatorial identities.
But, in practice, computing these functions is not an easy task as revealed for example by authors

in [12], where they developed some numerical methods for the computation of the confluent and Gauss
hypergeometric functions. Motivated by the intention to get tools to overcome this diffi culty, we aim in the
present work to establish some approximations for the previous generalized hypergeometric functions. To
achieve this fundamental target, we will mainly use the discrete Chebychev inequality that will be recalled
in the following section.

2 Results

As mentioned earlier, we will investigate here some inequalities involving the functions (GCHF) and (GHF)
by employing the discrete Chebychev inequality (DCI). This inequality is still attractive due to its numerous
applications. It plays a fundamental role in the establishment of important results, as known for example in
the field of probability. DCI reads as follows.

Theorem 1 Let (xk), (yk), (mk), 1 ≤ k ≤ n, be three families of real numbers such that mk ≥ 0 for any
k = 1, 2, ..., n. Assume that (xk) and (yk) are monotonic in the same (resp. opposite) sense. Then we have

n∑
k=1

mk ×
n∑
k=1

mk xk yk ≥ (≤)

n∑
k=1

mk xk ×
n∑
k=1

mk yk. (13)

A proof of this Theorem can be found in [7].
Now, we are in the position to state our first main result which concerns an inequality involving simul-

taneously the three generalized functions, namely B(α,β)
p , 2F

(α,β;p)
1 and 1F

(α,β;p)
1 .

Theorem 2 Let a, b, c, α, β, p > 0 with b < c and 0 ≤ z < 1. Then we have the following inequality

(ez − 1)
{
B(b, c− b) 2F

(α,β;p)
1 (a, b; c; z)−B(α,β)

p (b, c− b)
}

≤
(

(1− z)−a − 1
){
B(b, c− b) 1F

(α,β;p)
1 (b; c; z)−B(α,β)

p (b, c− b)
}
. (14)

If moreover a ≥ 1 then we have

2F
(α,β;p)
1 (a, b; c; z) ≤ e−z(1− z)−a 1F

(α,β;p)
1 (b; c; z). (15)

Proof. We consider the following sequences,

xk = (a)k, yk = B(α,β)
p (b+ k, c− b) and mk =

zk

k!
, k ≥ 0.

By using the celebrated formula Γ(x+ 1) = xΓ(x), x > 0, it is not hard to see that

xk+1

xk
:=

(a)k+1

(a)k
=

Γ(a+ k + 1)

Γ(a+ k)
= a+ k > 1, ∀k ≥ 1, (16)

and so (xk)k≥1 is increasing. Otherwise, for 0 < t < 1 fixed, the function x 7−→ tx−1 is decreasing on (0,∞)

and thus the map x 7−→ B
(α,β)
p (x, y), for fixed y > 0, is also decreasing. It follows that (yk)k≥0 is decreasing

too. According to DCI (13), we have

n∑
k=1

mk ×
n∑
k=1

mk xk yk ≤
n∑
k=1

mk xk ×
n∑
k=1

mk yk. (17)
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In another part, we have

∞∑
k=1

mk xk =

∞∑
k=1

(a)k
zk

k!
= (1− z)−a − 1,

∞∑
k=1

mk =

∞∑
k=1

zk

k!
= ez − 1, (18)

and from (8) and (9) we get, respectively,

∞∑
k=1

mk xk yk =

∞∑
k=1

(a)kB
(α,β)
p (b+ k, c− b) z

k

k!
= B(b, c− b) 2F

(α,β;p)
1 (a, b; c; z)−B(α,β)

p (b, c− b), (19)

∞∑
k=1

mk yk =

∞∑
k=1

zk

k!
B(α,β;p)
p (b+ k, c− b) = B(b, c− b) 1F

(α,β;p)
1 (b; c; z)−B(α,β)

p (b, c− b). (20)

Letting n −→∞ in (17) and substituting (18),(19) and (20) therein we obtain (14).
If moreover a ≥ 1 then (xk) is increasing from k = 0 and so (17) holds for k = 0, 1, ..., n. We then deduce

(15) in a similar manner.
Taking p = 0 in Theorem 2, with the help of (10), we immediately obtain the following result.

Corollary 1 Let a, b, c > 0 with b < c and 0 ≤ z < 1. Then we have the following inequality

(ez − 1)
(

2F1(a, b; c; z)− 1
)
≤
(
(1− z)−a − 1

)(
1F1(b; c; z)− 1

)
. (21)

If moreover a ≥ 1 then we have

2F1(a, b; c; z) ≤ e−z(1− z)−a 1F1(b; c; z). (22)

The following remark may be of interest for the reader.

Remark 2 (i) From (3) and (6), it is easy to see that the real-functions z 7−→ 1F1(b; c; z) for z ∈ R,
and z 7−→ 2F1(a, b; c; z) for |z| < 1, are positive increasing. This, with the fact that 1F1(b; c; 0) =

2F1(a, b; c; 0) = 1, implies that

1F1(b; c; z) ≥ 1, 2F1(a, b; c; z) ≥ 1, for z ≥ 0.

It follows that (21) is equivalent to:

0 ≤ 2F1(a, b; c; z)− 1

1F1(b; c; z)− 1
≤ (1− z)−a − 1

ez − 1
, 0 < z < 1.

(ii) By similar way as in (i), (14) is equivalent to

0 ≤ B(b, c− b) 2F
(α,β;p)
1 (a, b; c; z)−B(α,β)

p (b, c− b)
B(b, c− b) 1F

(α,β;p)
1 (b; c; z)−B(α,β)

p (b, c− b)
≤ (1− z)−a − 1

ez − 1
, 0 < z < 1. (23)

(iii) By normalizing (7) and setting

B(α,β;p)(x, y) :=
1

B(x, y)

∫ 1

0

tx−1(1− t)y−1
1F1

(
α;β;

−p
t(1− t)

)
dt, (24)

then (23) is equivalent to

0 ≤ 2F
(α,β;p)
1 (a, b; c; z)−B(α,β;p)(b, c− b)

1F
(α,β;p)
1 (b; c; z)−B(α,β;p)(b, c− b)

≤ (1− z)−a − 1

ez − 1
, 0 < z < 1. (25)
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The following result gives a refinement of Theorem 2. For the sake of simplicity, we use the notation (24)
and we set

Λ(α,β;p)(a, b; c; z) =
2F

(α,β;p)
1 (a, b; c; z)−B(α,β;p)(b, c− b)

1F
(α,β;p)
1 (b; c; z)−B(α,β;p)(b, c− b)

, 0 < z ≤ 1. (26)

We have the following result.

Theorem 3 Let a, b, c, α, β, p > 0 with b < c. Then we have

max
0<z≤1

Λ(α,β;p)(a, b; c; z) = Λ(α,β;p)(a, b; c; 1). (27)

If moreover a ≥ 1 then we have

max
0<z≤1

2F
(α,β;p)
1 (a, b; c; z)

1F
(α,β;p)
1 (b; c; z)

=
2F

(α,β;p)
1 (a, b; c; 1)

1F
(α,β;p)
1 (b; c; 1)

. (28)

Proof. We consider the following sequences

xk = (a)k, yk = zk, mk =
B

(α,β)
p (b+ k, c− b)

k!
, k ≥ 0.

As previous, (xk)k≥1 is increasing for any a > 0 and (yk) is decreasing. Here we have

∞∑
k=1

mkxk = B(b, c− b) 2F
(α,β;p)
1 (a, b; c; 1)−B(α,β)

p (b, c− b), (29)

∞∑
k=1

mk = B(b, c− b) 1F
(α,β;p)
1 (b; c; 1)−B(α,β)

p (b, c− b). (30)

Applying DCI (13) and taking into account (19), (20), (29) and (30), with the help of (26), we get{
1F

(α,β;p)
1 (b; c; 1)−B(α,β;p)(b, c− b)

}{
2F

(α,β;p)
1 (a, b; c; z)−B(α,β;p)(b, c− b)

}
≤
{

2F
(α,β;p)
1 (a, b; c; 1)−B(α,β;p)(b, c− b)

}{
1F

(α,β;p)
1 (b; c; z)−B(α,β;p)(b, c− b)

}
.

Whence (27). If moreover a ≥ 1 then we proceed as in the proof of the preceding theorem and we get (28).

Remark 3 In the above, we claimed that Theorem 3 refines Theorem 2. In fact, this follows from (27) when
combined with (25) and (26).

We have the following result as well.

Theorem 4 Let a, b, c, α, β, p > 0 with c > b+ 1 and 0 ≤ z ≤ 1. If a ≥ 1 then the following inequality holds

B(α,β)
p (b, c− b− 1) 2F

(α,β;p)
1 (a, b; c; z) ≤ 2F

(α,β;p)
1 (a, b; c; 1)× 2F

(α,β;p)
1 (1, b; c; z). (31)

If a ≤ 1 then (31) is reversed.

Proof. Consider the following sequences

xk =
(a)k
k!

, yk = zk, mk = B(α,β)
p (b+ k, c− b); k ≥ 0.
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As for (16), we have
xk+1

xk
=
a+ k

k + 1
, k ≥ 0.

So, (xk) is increasing if a ≥ 1 and decreasing if a ≤ 1. Clearly, (yk) is decreasing. By DCI (13) we have
n∑
k=0

mk ×
n∑
k=0

mk xk yk ≤
n∑
k=0

mk xk ×
n∑
k=0

mk yk, (32)

provided that a ≥ 1, with reversed inequality for a ≤ 1. Utilizing (7), with Remark 1, we can write

∞∑
k=0

mk :=

∞∑
k=0

B(α,β)
p (b+ k, c− b) =

∞∑
k=0

∫ 1

0

tb+k−1(1− t)c−b−1
1F1

(
α, β;

−p
t(1− t)

)
dt

=

∫ 1

0

( ∞∑
k=0

tk
)
tb−1(1− t)c−b−1

1F1

(
α, β;

−p
t(1− t)

)
dt

=

∫ 1

0

tb−1(1− t)c−b−2
1F1

(
α, β;

−p
t(1− t)

)
dt, (33)

which, with (7) again, yields
∞∑
k=0

mk = B(α,β)
p (b, c− b− 1). (34)

In another part, by (8) we have
∞∑
k=0

mkxk =

∞∑
k=0

(a)kB
(α,β;p)
p (c+ k, c− b) 1

k!
= B(b, c− b) 2F

(α,β;p)
1 (a, b; c; 1) (35)

and, with the fact that (1)k = k!,
∞∑
k=0

mkyk =

∞∑
k=0

B(α,β)
p (b+ k, c− b)zk = 2F1(1, b; c; z). (36)

Finally, as for (11) we get
∞∑
k=0

mkxkyk = 2F1(a, b; c; z). (37)

After letting n → ∞ in (32) and then substituting (34), (35), (36) and (37) therein, we get (31) (resp. its
reverse) when a ≥ 1 (resp. a ≤ 1).
The following result may be stated as well.

Theorem 5 Let a, b, c, α, β, p, z > 0 with c > b and 0 ≤ z < 1. If a ≥ 1 then the following inequality holds

2F
(α,β;p)
1 (a, b; c; z) ≤ (1− z) 2F

(α,β;p)
1 (a, 1; 1; z)× 2F

(α,β;p)
1 (1, b; c; z). (38)

If a ≤ 1 then (38) is reversed.

Proof. Let us consider the following

xk =
(a)k
k!

, yk = B(α,β)
p (b+ k, c− b), mk = zk, k ≥ 0.

As in the proof of Theorem 4, (xk) is increasing for a ≥ 1 and decreasing when a ≤ 1. As in the proof of
Theorem 2, (yk) is decreasing. Furthermore, using (1), we have

∞∑
k=0

mkxk = 2F1(a, 1; 1; z) and,
∞∑
k=0

mk =
1

1− z .

In a similar manner as for the previous results, we can then conclude by utilizing (36) and (37).
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Remark 4 The right side in inequalities (15) and (22) is easier to compute than the left one. Thus, these
inequalities can be used in providing other upper bounds in the inequalities (31) and (38).

Now we will give another inequality, of multiplicative type, regrouping as well the three generalized
functions B(α,β)

p , 2F
(α,β;p)
1 and 1F

(α,β;p)
1 . It reads as follows.

Theorem 6 Let b, c, α, β, p > 0 with b+ 1 < c and 0 ≤ z ≤ 1. Then we have the following inequality

B(α,β)
p (b, c− b− 1) 1F

(α,β;p)
1 (b; c; z) ≥ B(b, c− b) 1F

(α,β;p)
1 (b; c; 1)× 2F

(α,β;p)
1 (1, b; c; z). (39)

In particular, we have

1F1(b; c; z) ≥ c

c− b− 1
1F1(b; c; 1)× 2F1(1, b; c; z). (40)

Proof. Here we consider the following sequences

xk = zk, yk =
1

k!
, mk = B(α,β)

p (b+ k, c− b); k ≥ 0.

It is obvious that (xk) and (yk) are both decreasing. Using DCI (13) we have
n∑
k=0

mk ×
n∑
k=0

mk xk yk ≥
n∑
k=0

mk xk ×
n∑
k=0

mk yk. (41)

By (9), we obtain
∞∑
k=0

mk yk :=

∞∑
k=0

B
(α,β)
p (b+ k, c− b)

k!
= B(b, c− b) 1F1(b; c; 1). (42)

Letting n→∞ in (41) and using (34), (36), (37) and (42) we get (39).
Taking p = 0 in (39) we immediately obtain (40), so completing the proof.
Another main result is recited in the following.

Theorem 7 Let b, c, α, β, p > 0 with b < c. Let z, z0 be such that 0 ≤ z < z0. Then we have

1F
(α,β;p)
1 (b; c; z) ≥ ez−z0 1F

(α,β;p)
1 (b; c; z0). (43)

That is, the function z 7−→ e−z 1F
(α,β;p)
1 (b; c; z) is decreasing on (0,∞). In particular, we have

1F1(b; c; z) ≥ ez−z0 1F1(b; c; z0), 0 ≤ z < z0. (44)

Proof. Let us consider the following sequences,

xk = B(α,β)
p (b+ k, c− b), yk =

( z
z0

)k
and mk =

zk0
k!
, for k ≥ 0.

Since 0 < z < z0 then (yk)k≥0 is decreasing and as in the proof of the previous theorem (xk)k≥0 is decreasing
as well. Using DCI (13) we obtain

n∑
k=0

mk ×
n∑
k=0

mk xk yk ≥
n∑
k=0

mk xk ×
n∑
k=0

mk yk. (45)

Otherwise, taking into account the formula (9) we have

∞∑
k=0

mk = ez0 ,

∞∑
k=0

mk xk yk = B(b, c− b)1F
(α,β;p)
1 (b; c; z),

∞∑
k=0

mk xk = B(b, c− b)1F
(α,β;p)
1 (b; c; z0) and

∞∑
k=0

mk yk = ez.

Substituting these, after letting n −→ ∞ in (45), we get (43). Taking p = 0 in (43), with the help of (10),
we get (44), so completing the proof.
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Corollary 2 Let b, c, α, β, p, z > 0 with b < c. Then we have

1F
(α,β;p)
1 (b+ 1; c+ 1; z) ≤ c

b
1F

(α,β;p)
1 (b; c; z) (46)

Proof. Following Theorem 7, z 7−→ e−z 1F
(α,β;p)
1 (b; c; z) is decreasing on (0,∞) and so we have

∀z > 0
d

dz

(
e−z 1F

(α,β;p)
1 (b; c; z)

)
≤ 0,

or, equivalently,

∀z > 0
d

dz
1F

(α,β;p)
1 (b; c; z)

)
≤ 1F

(α,β;p)
1 (b; c; z). (47)

Using (9) we have
d

dz
1F

(α,β;p)
1 (b; c; z) =

∞∑
n=1

B
(α,β)
p (b+ n, c− b)
B(b, c− b)

zn−1

(n− 1)!
.

Now, using the celebrated formulas B(x, y) = Γ(x)Γ(y)
Γ(x+y) , Γ(x+ 1) = Γ(x), x, y > 0, we get

d

dz
1F

(α,β;p)
1 (b; c; z) =

∞∑
n=0

B
(α,β)
p (b+ 1 + n, c− b)

B(b, c− b)
zn

n!

=
B(b+ 1, c− b)
B(b, c− b)

∞∑
n=0

B
(α,β)
p (b+ 1 + n, c− b)
B(b+ 1, c− b)

zn

n!
=
b

c
1F

(α,β;p)
1 (b+ 1; c+ 1; z).

Substituting this in (47) we get (46).
We end this section by stating the following result.

Theorem 8 Let a, b, c, α, β, p > 0 and 0 ≤ z1 < 1, 0 ≤ z2 < 1. Then we have the following inequality(
2F

(α,β;p)
1 (a, b; c; z1z2)

)2

≥ (1− z1)a(1− z2)a 2F
(α,β;p)
1 (a, b; c; z1)× 2F

(α,β;p)
1 (a, b; c; z2) (48)

Proof. Let us consider the following sequences

xk = B(α,β)
p (b+ k, c− b), yk = zk1 , mk =

(a)k
k!

zk2 , k ≥ 0.

The sequences (xk) and (yk) are both decreasing. Otherwise, by similar way as previous we have

∞∑
k=0

mk = (1− z2)−a,

∞∑
k=0

mkxkyk = B(b, c− b) 2F1(a, b; c; z1z2),

∞∑
k=0

mkxk = B(b, c− b) 2F1(a, b; c; z2),

∞∑
k=0

mkyk = 2F1(a, 1; 1; z1z2).

By DCI (13) we then obtain

2F1(a, b; c; z1z2) ≥ (1− z2)a 2F1(a, b; c; z2) 2F1(a, 1; 1; z1z2). (49)

Interchanging the role of z1 and z2 in (49) we obtain

2F1(a, b; c; z1z2) ≥ (1− z1)a 2F1(a, b; c; z1) 2F1(a, 1; 1; z1z2). (50)

Multiplying (49) and (50) side by side we get (48), since 2F1(a, 1; 1; z1z2) ≥ 1 for z1, z2 ≥ 0.
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3 Concluding Remarks

In this paper, we have investigated some approximations for the generalized Gauss hypergeometric and the
generalized confluent hypergeometric functions. Investing the discrete Chebychev inequality, we established
several analytic inequalities involving these functions. In particular, some approximations have been ex-
pressed in terms of the classical and generalized beta function and the confluent hypergeometric function.
In perspective, we plan to study in a future research the investment of the inequalities highlighted in this
paper in the study of the behavior of these classes of hypergeometric functions.
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