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Abstract

In this paper, we develop a method to obtain the lines of curvature on parametric hypersurfaces in
Euclidean 4-space. We show that such lines are the solutions to systems of first order triplet non-linear
differential equations. Even if these curves cannot be obtained analytically in general, it is also shown that
it is possible to compute all curvatures of a Frenet line of curvature by using the extended Darboux frame
along the curve. We obtain the Frenet vectors and extended Darboux vectors of the line of curvature
without encountering any singular case. In addition, we construct a developable ruled hypersurface whose
base curve is always a line of curvature. We provide an example to show the applicability of the given
method.

1 Introduction

A curve on a surface is called a line of curvature if it is always tangent to a principal direction. Lines of
curvature on surfaces have always been the focus of attention not only in differential geometry (e.g. [4, 16])
but also in geometric modeling (e.g. [12]). Differential geometrical properties of such curves on parametric
surfaces and hypersurfaces can be found in [4, 13, 16] and [2], respectively. It is known that a line of curvature
on a parametric surface in Euclidean 3-space E3 satisfies the following differential equation [4]

(LE− NF)(u′2 + (ME− NG)u′v′ + (MF− LG)(v′)2 = 0.

If the above differential equation can be solved explicitly, then the line of curvature on the given surface can
be obtained. In this case, it is easy to compute its Frenet apparatus. If we have an approximate solution for
the line of curvature, then we need new techniques to calculate its curvatures and Frenet vectors. In 2007,
Che et al. studied lines of curvature and their differential geometric properties for implicit surfaces in E3
[5]. In 2014, Joo et al. presented algorithms for computing the differential geometric properties of lines of
curvature of parametric surfaces in E3. They derived the unit tangent vector, curvature vector, binormal
vector and torsion of such lines. They also derived algorithms for evaluating the higher-order derivatives
of lines of curvature of parametric surfaces [10] (The previous studies including the applications of lines of
curvature have been reviewed in [5] and [10]).
Lines of curvature have also been studied in E4. The differential equation of the lines of curvature

for immersions of surfaces into E4 has been established by [9]. In [11], the authors establish the geometric
structure of the lines of curvature of a hypersurface immersed in E4 in a neighborhood of the set of its principal
curvature singularities, consisting of the points at which at least two principal curvatures are equal. The
geometric structures of the lines of curvature and the partially umbilic singularities of the three-dimensional
non-compact generic quadric hypersurfaces of E4 have been studied in [14].

In this paper, we present a method to compute the lines of curvature and their differential geometric
properties on parametric hypersurfaces in E4. By using the extended Darboux frame along a curve lying on
a hypersurface, we obtain the curvatures, Frenet vectors and extended Darboux vectors of the obtained lines

∗Mathematics Subject Classifications: 65L05, 53A07, 53A55.
†Vefa High School, Istanbul, 34134, Türkiye
‡Department of Mathematics, Yildiz Technical University, Istanbul, 34220, Türkiye

274



F. Çelik and M. Düldül 275

of curvature. In addition, we construct a developable ruled hypersurface whose base curve is always a line
of curvature.
This paper is organized as follows: In section 2, we introduce some necessary notations and give some

definitions for curves lying on hypersurfaces. The extended Darboux frame is also given in section 2. In
section 3, we give a method to compute the lines of curvature of parametric hypersurfaces in E4. Also, we
provide a method for computing the curvatures, Frenet vectors and extended Darboux vectors of the line of
curvature. In section 4, we construct a special developable ruled hypersurface whose base curve is always a
line of curvature. An illustrative example is presented in section 5.

2 Preliminaries

2.1 Curves on Hypersurfaces in E4

Definition 1 The ternary product of the vectors

x =

4∑
i=1

xiei, y =

4∑
i=1

yiei, and z =

4∑
i=1

ziei

is defined by [15]

x⊗ y ⊗ z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ ,
where {e1, e2, e3, e4} denotes the standard basis of R4.

Let M ⊂ E4 be a regular hypersurface given by its parametric equation R = R(u1, u2, u3) and α : I ⊂
R → M be a unit speed curve. If {t,n,b1,b2} denotes the moving Frenet frame along α, then the Frenet
formulas are given by [1]

t′ = k1n, n′ = −k1t+ k2b1, b′1 = −k2n+ k3b2, b′2 = −k3b1,

where t,n,b1, and b2 denote the tangent, the principal normal, the first binormal, and the second binormal
vector fields, respectively, and ki(i = 1, 2, 3) denotes the ith curvature function of the curve α. The Frenet
vectors and curvatures of the curve are given by [1]

t = α′, n =
α′′

‖α′′‖ , b2 =
α′ ⊗ α′′ ⊗ α′′′
‖α′ ⊗ α′′ ⊗ α′′′‖ , b1 = b2 ⊗ t⊗ n, (1)

k1 = ‖α′′‖, k2 =
〈b1, α′′′〉

k1
, k3 =

〈b2, α(4)〉
k1k2

.

The derivatives of the curve α are obtained as

α′ = t, α′′ = t′ = k1n, α′′′ = −k21t+ k′1n+ k1k2b1,

α(4) = −3k1k
′
1t+ (−k31 + k′′1 − k1k22)n+ (2k′1k2 + k1k

′
2)b1 + k1k2k3b2.

In addition, since α lies on M , we can write α(s) = R(u1(s), u2(s), u3(s)). Thus, we have α′(s) =
3∑
i=1

Riu
′
i,

where Ri = ∂R
∂ui

, i = 1, 2, 3, and

α′′(s) =

3∑
i=1

Riu
′′
i +

3∑
i,j=1

Riju
′
iu
′
j , (2)
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α′′′(s) =

3∑
i=1

Riu
′′′
i + 3

3∑
i,j=1

Riju
′′
i u
′
j +

3∑
i,j,k=1

Rijku
′
iu
′
ju
′
k, (3)

α(4)(s) =

3∑
i=1

Riu
(4)
i + 4

3∑
i,j=1

Riju
′′′
i u
′
j + 3

3∑
i,j=1

Riju
′′
i u
′′
j + 6

3∑
i,j,k=1

Rijku
′′
i u
′
ju
′
k +

3∑
i,j,k,`=1

Rijk`u
′
iu
′
ju
′
ku
′
`. (4)

Definition 2 A unit speed curve β : I → En of class Cn is called a Frenet curve if the vectors β′(s), β′′(s), ...,
β(n−1)(s) are linearly independent at each point along the curve.

2.2 Extended Darboux Frame in E4

Let M ⊂ E4 be a regular hypersurface and α : I ⊂ R→M be a unit speed Frenet curve. Let T denote the
unit tangent vector field along α, and N denote the unit normal vector field of M restricted to the curve α.
Then the extended Darboux frame of first kind along α is given by {T,E,D,N}, where

E =
T′ − 〈T′,N〉N
‖T′ − 〈T′,N〉N‖ , D = N⊗T⊗E.

This frame satisfies the following system of differential equations [8]
T′

E′

D′

N′

 =


0 k1g 0 kn
−k1g 0 k2g τ1g

0 −k2g 0 τ2g
−kn −τ1g −τ2g 0



T
E
D
N

 , (5)

where kig and τ
i
g denote the geodesic curvature and geodesic torsion of order i, respectively, and kn denotes

the normal curvature of the hypersurface in the direction of the tangent vector T. Then we have [8]

k1g = 〈T′,E〉, k2g = 〈E′,D〉, τ1g = 〈E′,N〉, τ2g = 〈D′,N〉, kn = 〈T′,N〉.

2.3 Ruled Hypersurface in E4

A ruled hypersurface in E4 can be parametrized by the map

ψ : I × R2 → E4, ψ(s, u, v) = β(s) + ue1(s) + ve2(s),

where β : I ⊂ R → E4 denotes the base curve with unit tangent vector e0, and {e1(s), e2(s)} denotes an
orthonormal basis of generating plane along β. Let

rank[e0, e1, e2, e′1, e
′
2] = 4− k. (6)

If k = 0 (resp. k = 1) in (6), then the ruled hypersurface is called non-developable (resp. developable) [3].

3 Lines of Curvature of Parametric Hypersurfaces in E4

In this section, we first show how we can obtain the lines of curvature of a parametric hypersurface in E4.
Then, we show that, even if such curves cannot be obtained analytically in general, it is still possible to
compute their curvatures and Frenet vectors.
Let R = R(u1, u2, u3) denote a regular hypersurface M defined on a domain B. Then, the unit normal

vector field of M is given by N = R1⊗R2⊗R3

‖R1⊗R2⊗R3‖ . Since the normal curvature of M at a point is given by

kn = II
I , we have

kn(λ, µ) =
h11 + 2h12λ+ 2h13µ+ 2h23λµ+ h22λ

2 + h33µ
2

g11 + 2g12λ+ 2g13µ+ 2g23λµ+ g22λ
2 + g33µ2

, (7)
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where I and II denote the first and second fundamental forms ofM , respectively, (λ, µ) =
(
du2
du1

, du3du1

)
denotes

the tangent direction for du1 6= 0, and gij , hij denote the coeffi cients of the first and second fundamental
forms, respectively. It is well-known that the extremal values of normal curvature are principal curvatures
[2]. If we take the partial derivatives of kn with respect to λ and µ, respectively, we have

∂kn
∂λ

=

(
2h12 + 2h23µ+ 2h22λ

)
I− II

(
2g12 + 2g23µ+ 2g22λ

)
(
g11 + 2g12λ+ 2g13µ+ 2g23λµ+ g22λ

2 + g33µ2
)2 ,

∂kn
∂µ

=

(
2h13 + 2h23λ+ 2h33µ

)
I− II

(
2g13 + 2g23λ+ 2g33µ

)
(
g11 + 2g12λ+ 2g13µ+ 2g23λµ+ g22λ

2 + g33µ2
)2 .

Then, we obtain

kn(λ, µ) =
II
I

=
h12 + h22λ+ h23µ

g12 + g22λ+ g23µ
=
h13 + h23λ+ h33µ

g13 + g23λ+ g33µ
=
h11 + h12λ+ h13µ

g11 + g12λ+ g13µ
.

Thus, the principal curvatures satisfy the following homogeneous system [2]
(h11 − kng11)du1 + (h12 − kng12)du2 + (h13 − kng13)du3 = 0,

(h12 − kng12)du1 + (h22 − kng22)du2 + (h23 − kng23)du3 = 0,

(h13 − kng13)du1 + (h23 − kng23)du2 + (h33 − kng33)du3 = 0.

(8)

Let us denote the coeffi cient matrix of the above system by A, i.e.

A =

 h11 − kng11 h12 − kng12 h13 − kng13
h12 − kng12 h22 − kng22 h23 − kng23
h13 − kng13 h23 − kng23 h33 − kng33

 .

In case rank(A) = 0, since all directions satisfy (8), the point is an umbilical point. Then, because of the
properties of umbilical points, we obtain

kn =
h11
g11

=
h12
g12

=
h13
g13

=
h23
g23

=
h22
g22

=
h33
g33

.

In case rank(A) = 3, the system has the trivial solution only. For the principal directions, we need the
nontrivial solutions of this system. This system has a nontrivial solution if and only if detA = 0, i.e.

detA =
(
g212g33 + g213g22 + g223g11 − 2g12g23g13 − g11g22g33

)
k3n

+
(

2h12g13g23 − 2h12g12g33 + 2h13g12g23 + 2h23g12g13 + h22g11g33 + h33g11g22

+h11g22g33 − 2h13g22g13 − 2h23g11g23 − h33g212 − h22g213 − h11g223
)
k2n

+
(

2h12h33g12 − 2h12h23g13 − 2h13h23g12 + 2h11h23g23 + 2h13h22g13

−h11h22g33 − h22h33g11 − h11h33g22 − 2h12h13g23 + h223g11 + h213g22 + h212g33

)
kn

+2h12h13h23 + h11h22h33 − h212h33 − h213h22 − h223h11 = 0.

If we denote

K1 = −2h12h13h23 + h11h22h33 − h212h33 − h213h22 − h223h11
g212g33 + g213g22 + g223g11 − 2g12g23g13 − g11g22g33

,
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K2 =− 2h12g13g23 − 2h12g12g33 + 2h13g12g23 + 2h23g12g13 + h22g11g33 + h33g11g22

3
(
g212g33 + g213g22 + g223g11 − 2g12g23g13 − g11g22g33

)
− h11g22g33 − 2h13g22g13 − 2h23g11g23 − h33g212 − h22g213 − h11g223

3
(
g212g33 + g213g22 + g223g11 − 2g12g23g13 − g11g22g33

) ,

K3 =
2h12h33g12 − 2h12h23g13 − 2h13h23g12 + 2h11h23g23 + 2h13h22g13 − h11h22g33

g212g33 + g213g22 + g223g11 − 2g12g23g13 − g11g22g33

+
−h22h33g11 − h11h33g22 − 2h12h13g23 + h223g11 + h213g22 + h212g33

g212g33 + g213g22 + g223g11 − 2g12g23g13 − g11g22g33
,

the last equation can be written as

k3n − 3K2k2n +K3kn −K1 = 0, (9)

where K1 and K2 correspond to the Gauss and mean curvatures, respectively. Note that (9) is a third order
equation with respect to kn. If we use the Cardano’s method [7] for cubic equations, we can express the
principal curvatures in terms of K1, K2 and K3.

3.1 Computation of Line of Curvature

Let us now give a method for obtaining the unit speed line of curvature of a parametric hypersurface. Let
us assume that rank(A) = 2. In this case, we have at least one 2 × 2 submatrix of A which has nonzero
determinant. Suppose that

a1 = (h12 − kng12)(h23 − kng23)− (h22 − kng22)(h13 − kng13) 6= 0.

Note that a1 corresponds to the determinant for coeffi cients of du2 and du3 in the first and second equations
of (8). Let

a2 = (h12 − kng12)(h13 − kng13)− (h11 − kng11)(h23 − kng23),
a3 = (h11 − kng11)(h22 − kng22)− (h12 − kng12)2.

Then, if we choose
u′1 = ηa1, u′2 = ηa2, u′3 = ηa3, (10)

(where η is a nonzero factor) it is easy to see that (10) satisfies (8). Note that a2 and a3 also correspond to
the determinants of some submatrices obtained from the matrix A. Since the line of curvature is unit speed,
its first fundamental form is given by

3∑
i,j=1

giju
′
iu
′
j = 1. (11)

Hence, substituting (10) into (11) determines η as

η = ∓ 1√
g11a21 + 2g12a1a2 + 2g13a1a3 + 2g23a2a3 + g22a22 + g33a23

. (12)

If we substitute (12) into (10), we obtain
u′1 = ∓ a1√

g11a21+2g12a1a2+2g13a1a3+2g23a2a3+g22a
2
2+g33a

2
3

,

u′2 = ∓ a2√
g11a21+2g12a1a2+2g13a1a3+2g23a2a3+g22a

2
2+g33a

2
3

,

u′3 = ∓ a3√
g11a21+2g12a1a2+2g13a1a3+2g23a2a3+g22a

2
2+g33a

2
3

.

(13)

Thus, the line of curvature α(s) can be obtained as a solution to the system (13) together with the initial
values u1(0) = u0, u2(0) = v0, u3(0) = w0.
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3.2 Curvatures of Line of Curvature

Now, we want to find all curvatures of the line of curvature α(s) obtained by the above method. For this
purpose, we need to compute the higher order derivatives of α(s).

3.2.1 First Curvature (k1)

If we use (2) and (5), we may write

α′′(s) = k1gE+ knN = R1u
′′
1 +R2u

′′
2 +R3u

′′
3 + Ω1, (14)

where Ω1 =
3∑

i,j=1

Riju
′
iu
′
j . Since u

′
1, u

′
2 and u

′
3 are known from (13), Ω1 is known. Taking inner product of

(14) with R1, R2 and R3, respectively, we get the equations

k1g〈E,R1〉 = g11u
′′
1 + g12u

′′
2 + g13u

′′
3 + 〈Ω1,R1〉, (15)

k1g〈E,R2〉 = g12u
′′
1 + g22u

′′
2 + g23u

′′
3 + 〈Ω1,R2〉, (16)

k1g〈E,R3〉 = g13u
′′
1 + g23u

′′
2 + g33u

′′
3 + 〈Ω1,R3〉. (17)

Moreover, since α′ =
3∑
i=1

Riu
′
i and 〈E, α′〉 = 0, for u′1 6= 0 we have

〈E,R1〉 = −u
′
2〈E,R2〉
u′1

− u′3〈E,R3〉
u′1

. (18)

If we substitute (18) into (15), using (16) and (17) we get(
3∑
i=1

u′ig1i

)
u′′1 +

(
3∑
i=1

u′ig2i

)
u′′2 +

(
3∑
i=1

u′ig3i

)
u′′3 = −

〈
Ω1, α

′
〉
. (19)

Differentiating the first and second equations of (8), we obtain

(h11 − kng11)u′′1 + (h12 − kng12)u′′2 + (h13 − kng13)u′′3 = ρ1, (20)

(h12 − kng12)u′′1 + (h22 − kng22)u′′2 + (h23 − kng23)u′′3 = ρ2, (21)

where

ρ1 = −
(
h′11 − k′ng11 − kng′11

)
u′1 −

(
h′12 − k′ng12 − kng′12

)
u′2 −

(
h′13 − k′ng13 − kng′13

)
u′3,

ρ2 = −
(
h′12 − k′ng12 − kng′12

)
u′1 −

(
h′22 − k′ng22 − kng′22

)
u′2 −

(
h′23 − k′ng23 − kng′23

)
u′3.

If we consider (16), (17) and (19)—(21), we obtain the following nonhomogeneous system of linear equations

3∑
i=1

u′ig1i
3∑
i=1

u′ig2i
3∑
i=1

u′ig3i 0 0

g12 g22 g23 −1 0
g13 g23 g33 0 −1

h11 − kng11 h12 − kng12 h13 − kng13 0 0
h12 − kng12 h22 − kng22 h23 − kng23 0 0




u′′1
u′′2
u′′3

k1g〈E,R2〉
k1g〈E,R3〉

 =


−〈Ω1, α′〉
−〈Ω1,R2〉
−〈Ω1,R3〉

ρ1
ρ2

 . (22)

Since the determinant of the coeffi cient matrix of the above system is nonzero, i.e.√
g11a21 + 2g12a1a2 + 2g13a1a3 + 2g23a2a3 + g22a22 + g33a23 6= 0,
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the unknowns u′′1 , u
′′
2 , u

′′
3 , k

1
g〈E,R2〉, and k1g〈E,R3〉 can be computed from (22). These solutions enable us

to compute the curvature vector α′′, the vectors E = T′−〈T′,N〉N
‖T′−〈T′,N〉N‖ and D = N⊗T⊗E, and k1g . Hence, the

first curvature of the line of curvature is obtained by

k1 =
√

(kn)2 + (k1g)2.

3.2.2 Second Curvature (k2)

To obtain the second curvature, we need to determine the third order derivative of α.
Since α is a line of curvature, we have τ1g = τ2g = 0. If we take the derivative of α′′ = k1gE + knN with

respect to arc-length, we get
α′′′ = (k1g)′E− k21T+ k1gk

2
gD+ k′nN.

Thus, if we use (3) and (5), we have

(k1g)′E− k21T+ k1gk
2
gD+ k′nN = R1u

′′′
1 +R2u

′′′
2 +R3u

′′′
3 + Ω2, (23)

where

Ω2 = 3

3∑
i,j=1

Riju
′
iu
′′
j +

3∑
i,j,k=1

Rijku
′
iu
′
ju
′
k.

If we take the inner product of both sides of (23) with R1, R2, and R3, respectively, we obtain the linear
equations

g11u
′′′
1 + g12u

′′′
2 + g13u

′′′
3 − (k1g)′〈E,R1〉 − k1gk2g〈D,R1〉 = −k21〈T,R1〉 − 〈Ω2,R1〉, (24)

g12u
′′′
1 + g22u

′′′
2 + g23u

′′′
3 − (k1g)′〈E,R2〉 − k1gk2g〈D,R2〉 = −k21〈T,R2〉 − 〈Ω2,R2〉,

g13u
′′′
1 + g23u

′′′
2 + g33u

′′′
3 − (k1g)′〈E,R3〉 − k1gk2g〈D,R3〉 = −k21〈T,R3〉 − 〈Ω2,R3〉,

with the unknowns u′′′1 , u
′′′
2 , u

′′′
3 , (k1g)′ and k2g . So, we have to find two more equations to obtain these

unknowns. Differentiating (20) and (21), we get

(h11 − kng11)u′′′1 + (h12 − kng12)u′′′2 + (h13 − kng13)u′′′3 = ρ3, (25)

(h12 − kng12)u′′′1 + (h22 − kng22)u′′′2 + (h23 − kng23)u′′′3 = ρ4, (26)

where

ρ3 = −
(
h′′11 − k′′ng11 − 2k′ng

′
11 − kng′′11

)
u′1 − 2

(
h′11 − k′ng11 − kng′11

)
u′′1

−
(
h′′12 − k′′ng12 − 2k′ng

′
12 − kng′′12

)
u′2 − 2

(
h′12 − k′ng12 − kng′12

)
u′′2

−
(
h′′13 − k′′ng13 − 2k′ng

′
13 − kng′′13

)
u′3 − 2

(
h′13 − k′ng13 − kng′13

)
u′′3 ,

and

ρ4 = −
(
h′′12 − k′′ng12 − 2k′ng

′
12 − kng′′12

)
u′1 − 2

(
h′12 − k′ng12 − kng′12

)
u′′1

−
(
h′′22 − k′′ng22 − 2k′ng

′
22 − kng′′22

)
u′2 − 2

(
h′22 − k′ng22 − kng′22

)
u′′2

−
(
h′′23 − k′′ng23 − 2k′ng

′
23 − kng′′23

)
u′3 − 2

(
h′23 − k′ng23 − kng′23

)
u′′3 .
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Then, the equations (24) through (26) constitute a linear equation system QX = S, where

Q =


g11 g12 g13 −〈E,R1〉 −k1g〈D,R1〉
g12 g22 g23 −〈E,R2〉 −k1g〈D,R2〉
g13 g23 g33 −〈E,R3〉 −k1g〈D,R3〉

h11 − kng11 h12 − kng12 h13 − kng13 0 0
h12 − kng12 h22 − kng22 h23 − kng23 0 0



X =


u′′′1
u′′′2
u′′′3

(k1g)′

k2g

 , S =


−k21〈T,R1〉 − 〈Ω2,R1〉
−k21〈T,R2〉 − 〈Ω2,R2〉
−k21〈T,R3〉 − 〈Ω2,R3〉

ρ3
ρ4

 .

We should here note that k1g 6= 0. Otherwise, by (5), the equality T′ = k1gE+knN becomes T′ = knN which
implies that α is a geodesic curve. However, a Frenet curve which is a line of curvature cannot be a geodesic
curve. Thus, since the determinant of the coeffi cient matrix Q is nonzero, i.e.

detQ = k1g‖R1 ⊗R2 ⊗R3‖
√
g11a21 + 2g12a1a2 + 2g13a1a3 + 2g23a2a3 + g22a22 + g33a23 6= 0,

the unknowns u′′′1 , u
′′′
2 , u

′′′
3 , (k1g)′ and k2g can be obtained. These solutions enable us to compute α

′′′. If we
use (1), we can compute the Frenet vectors b1 and b2 of α. Therefore, the second curvature can be obtained
by k2 = 〈b1,α′′′〉

k1
. We also have k′1 = 〈n, α′′′〉 and k′n = 〈N, α′′′〉.

Furthermore, k2 cannot be zero. Otherwise, the third derivative of α can be written as a linear combi-
nation of α′ and α′′ which contradicts with the fact that α is a Frenet curve.

3.2.3 Third Curvature (k3)

Similarly, we need to find the fourth derivative of the line of curvature to obtain its third curvature. If we
take the derivative of α′′′, we may write

α(4) =
[
− 2k1k

′
1 − k1g(k1g)′ − knk′n

]
T+

[
(k1g)′′ − k21k1g − k1g(k2g)2

]
E

+
[
2(k1g)′k2g + k1g(k2g)′

]
D+

(
k′′n − k21kn

)
N.

On the other hand, for the fourth derivative, from (4) we also have

α(4) = R1u
(4)
1 +R2u

(4)
2 +R3u

(4)
3 + Ω3,

where

Ω3 = 4

3∑
i,j=1

Riju
′′′
i u
′
j + 3

3∑
i,j=1

Riju
′′
i u
′′
j + 6

3∑
i,j,k=1

Rijku
′′
i u
′
ju
′
k +

3∑
i,j,k,`=1

Rijk`u
′
iu
′
ju
′
ku
′
`.

Hence, we may write

α(4) =
[
− 2k1k

′
1 − k1g(k1g)′ − knk′n

]
T+

[
(k1g)′′ − k21k1g − k1g(k2g)2

]
E

+
[
2(k1g)′k2g + k1g(k2g)′

]
D+

(
k′′n − k21kn

)
N

= R1u
(4)
1 +R2u

(4)
2 +R3u

(4)
3 + Ω3. (27)

If we take the inner product of both sides of (27) with R1, R2 and R3, respectively, we get the following
equations

g11u
(4)
1 + g12u

(4)
2 + g13u

(4)
3 − 〈E,R1〉(k1g)′′ − k1g(k2g)′〈D,R1〉

= −〈Ω3,R1〉 − [2k1k
′
1 + k1g(k1g)′ + knk

′
n]〈T,R1〉 −

[
k21k

1
g + k1g(k2g)2

]
〈E,R1〉+ 2(k1g)′k2g〈D,R1〉, (28)
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g12u
(4)
1 + g22u

(4)
2 + g23u

(4)
3 − 〈E,R2〉(k1g)′′ − k1g(k2g)′〈D,R2〉

= −〈Ω3,R2〉 −
[
2k1k

′
1 + k1g(k1g)′ + knk

′
n

]
〈T,R2〉 −

[
k21k

1
g + k1g(k2g)2

]
〈E,R2〉+ 2(k1g)′k2g〈D,R2〉,

g13u
(4)
1 + g23u

(4)
2 + g33u

(4)
3 − 〈E,R3〉(k1g)′′ − k1g(k2g)′〈D,R3〉

= −〈Ω3,R3〉 −
[
2k1k

′
1 + k1g(k1g)′ + knk

′
n

]
〈T,R3〉 −

[
k21k

1
g + k1g(k2g)2

]
〈E,R3〉+ 2(k1g)′k2g〈D,R3〉.

Differentiating (25) and (26), we get

(h11 − kng11)u(4)1 + (h12 − kng12)u(4)2 + (h13 − kng13)u(4)3 = ρ5,

(h12 − kng12)u(4)1 + (h22 − kng22)u(4)2 + (h23 − kng23)u(4)3 = ρ6, (29)

where

ρ5 = −
(
h′′′11 − k′′′n g11 − 3k′′ng

′
11 − 3k′ng

′′
11 − kng′′′11

)
u′1 − 3

(
h′′11 − k′′ng11 − 2k′ng

′
11 − kng′′11

)
u′′1

−3
(
h′11 − k′ng11 − kng′11

)
u′′′1 −

(
h′′′12 − k′′′n g12 − 3k′′ng

′
12 − 3k′ng

′′
12 − kng′′′12

)
u′2

−3
(
h′′12 − k′′ng12 − 2k′ng

′
12 − kng′′12

)
u′′2 − 3

(
h′12 − k′ng12 − kng′12

)
u′′′2

−
(
h′′′13 − k′′′n g13 − 3k′′ng

′
13 − 3k′ng

′′
13 − kng′′′13

)
u′3 − 3

(
h′′13 − k′′ng13 − 2k′ng

′
13 − kng′′13

)
u′′3

−3
(
h′13 − k′ng13 − kng′13

)
u′′′3 ,

ρ6 = −
(
h′′′12 − k′′′n g12 − 3k′′ng

′
12 − 3k′ng

′′
12 − kng′′′12

)
u′1 − 3

(
h′′12 − k′′ng12 − 2k′ng

′
12 − kng′′12

)
u′′1

−3
(
h′12 − k′ng12 − kng′12

)
u′′′1 −

(
h′′′22 − k′′′n g22 − 3k′′ng

′
22 − 3k′ng

′′
22 − kng′′′22

)
u′2

−3
(
h′′22 − k′′ng22 − 2k′ng

′
22 − kng′′22

)
u′′2 − 3

(
h′22 − k′ng22 − kng′22

)
u′′′2

−
(
h′′′23 − k′′′n g23 − 3k′′ng

′
23 − 3k′ng

′′
23 − kng′′′23

)
u′3 − 3

(
h′′23 − k′′ng23 − 2k′ng

′
23 − kng′′23

)
u′′3

−3
(
h′23 − k′ng23 − kng′23

)
u′′′3 .

Thus, the equations (28) through (29) constitute a system of linear equations with the unknowns u(4)1 , u(4)2 ,
u
(4)
3 , (k1g)′′ and (k2g)′. This system is given in matrix notation by QY =W, where

Y =


u
(4)
1

u
(4)
2

u
(4)
3

(k1g)′′

(k2g)′

 , W =


τ1
τ2
τ3
ρ5
ρ6

 ,

τ1 = −〈Ω3,R1〉 − [2k1k
′
1 + k1g(k1g)′ + knk

′
n]〈T,R1〉 −

[
k21k

1
g + k1g(k2g)2

]
〈E,R1〉+ 2(k1g)′k2g〈D,R1〉,

τ2 = −〈Ω3,R2〉 − [2k1k
′
1 + k1g(k1g)′ + knk

′
n]〈T,R2〉 −

[
k21k

1
g + k1g(k2g)2

]
〈E,R2〉+ 2(k1g)′k2g〈D,R2〉,

τ3 = −〈Ω3,R3〉 − [2k1k
′
1 + k1g(k1g)′ + knk

′
n]〈T,R3〉 −

[
k21k

1
g + k1g(k2g)2

]
〈E,R3〉+ 2(k1g)′k2g〈D,R3〉.

Since detQ 6= 0, the unknowns in Y can be computed. Thus, the third curvature can be obtained by

k3 = 〈b2,α(4)〉
k1k2

.
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4 A Special Ruled Hypersurface in E4

In this section, we consider two special vector fields along a Frenet curve in E4, and we construct a developable
ruled hypersurface associated with these new vector fields. We show that the base curve is always a line of
curvature on the obtained hypersurface.
Let β : I ⊂ R→ E4 be a unit speed curve in E4 with non-zero curvatures k1, k2, k3, where k2

k3
is constant,

and let {t,n,b1,b2} denote its Frenet frame. Let us now introduce the following unit vector fields defined
along β:

H1(s) = b1(s), H2(s) =
1√

k22(s) + k23(s)
{k2(s)n(s)− k3(s)b2(s)} .

Since {H1,H2} is orthonormal, we define the ruled hypersurface

ψ(s, u, v) = β(s) + uH1(s) + vH2(s), s ∈ I, u, v ∈ R,

and call it the H1H2-ruled hypersurface of β(s).

Theorem 1 Let β : I ⊂ R → E4 be a unit speed curve with nonzero curvatures k1, k2, k3, where k2
k3
is

constant. Then

i) (s0, u0, v0) is a singular point of the H1H2-ruled hypersurface of β(s) if and only if

v0 =

√
k22 + k23
k1k2

(s0).

ii) β is a line of curvature on the H1H2-ruled hypersurface of β(s).

Proof. i) Since the partial derivatives of ψ(s, u, v) are

ψs =

(
1− vk1k2√

k22 + k23

)
t(s)− uk2n(s) + v

√
k22 + k23b1(s) + uk3b2(s),

ψu = b1(s), ψv =
1√

k22(s) + k23(s)
{k2(s)n(s)− k3(s)b2(s)} ,

we have

ψs ⊗ ψu ⊗ ψv =
k3√
k22 + k23

(
1− vk1k2√

k22 + k23

)
n(s) +

k2√
k22 + k23

(
1− vk1k2√

k22 + k23

)
b2(s).

Then, one can see that ψs ⊗ ψu ⊗ ψv vanishes if and only if 1 − vk1k2√
k22+k

2
3

= 0, i.e. (s0, u0, v0) is a singular

point of the H1H2-ruled hypersurface if and only if

v0 =

√
k22 + k23
k1k2

(s0).

ii) We have u = v = 0 for the points of β. Thus, β(s) is a regular point of ψ (s, u, v) for all s ∈ I. Then,
the unit normal vector field of the hypersurface ψ (s, u, v) restricted to the curve β is

Nβ(s) =
k3√
k22 + k23

n(s) +
k2√
k22 + k23

b2(s).

Differentiating the unit normal vector field Nβ with respect to s, we obtain

N′β(s) = − k1k3√
k22 + k23

t(s)

which shows that β is a line of curvature on the H1H2-ruled hypersurface.
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Theorem 2 Let β : I ⊂ R → E4 be a unit speed curve with arc-length parameter s. The H1H2-ruled
hypersurface associated with β is developable.

Proof. We have

rank[t,H1,H2,H′1,H′2] = rank


1 0 0 0
0 0 1 0

0 k2√
k22+k

2
3

0 − k3√
k22+k

2
3

0 −k2 0 k3
−k1k2√
k22+k

2
3

0
√
k22 + k23 0

 = 3.

Then, according to (6), the H1H2-ruled hypersurface associated with β is developable.

5 An Illustrative Example

Let us consider the hypersurface M with its parametric equation

R (u1, u2, u3) =

((
1−
√

2

3
u2

)
cos

(√
2√
3
u1

)
+

1√
3
u3 sin

(√
2√
3
u1

)
,(

1−
√

2

3
u2

)
sin

(√
2√
3
u1

)
− 1√

3
u3 cos

(√
2√
3
u1

)
,(

1 +

√
2

3
u2

)
cos

(
1√
3
u1

)
−
√

2√
3
u3 sin

(
1√
3
u1

)
,(

1 +

√
2

3
u2

)
sin

(
1√
3
u1

)
+

√
2√
3
u3 cos

(
1√
3
u1

))
, (30)

defined over

B =

{
(u1, u2, u3) ∈ E3 |u1, u3 ∈ R, u2 6=

9√
2

}
.

Then the unit normal vector field of M is given by

N =
R1 ⊗R2 ⊗R3

‖R1 ⊗R2 ⊗R3‖
=

1√
2

(
cos

(√
2√
3
u1

)
, sin

(√
2√
3
u1

)
, cos

(
1√
3
u1

)
, sin

(
1√
3
u1

))
.

In this case, the first fundamental form coeffi cients of M are

g11 = 1− 2
√

2

9
u2 +

2

9
u22 +

4

9
u23, g12 = −4

9
u3, g13 =

4

9
u2, g22 =

4

9
, g23 = 0, g33 = 1,

and the second fundamental form coeffi cients of M are

h11 =
u2
9
− 1√

2
, h12 = h13 = h22 = h23 = h33 = 0.

Thus, the normal curvature in the direction (λ, µ) is obtained from (7) as

kn(λ, µ) =

u2
9 −

1√
2

1− 2
√
2

9 u2 + 2
9u

2
2 + 4

9u
2
3 − 8

9u3λ+ 8
9u2µ+ 4

9λ
2 + µ2

. (31)
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By taking the partial derivatives of kn with respect to λ and µ, for the extremal values of kn we obtain
λ = u3 and µ = − 49u2. Substituting these results into (31) yields

kn(λ, µ) =
1

2
(
u2
9 −

1√
2

) =
1

2ω
,

where ω = u2
9 −

1√
2
. Then the coeffi cient matrix of the system (8) becomes

A =

 −1
ω

(
8u22
81 +

2u23
9

)
2
9ωu3 − 2

9ωu2
2
9ωu3 − 2

9ω 0
− 2
9ωu2 0 − 1

2ω

 ∼
 0 0 0

2
9ωu3 − 2

9ω 0
− 2
9ωu2 0 − 1

2ω


which means rank(A) = 2. We have

(h22 − kng22) (h33 − kng33)− (h23 − kng23)2 =
1

9ω2
6= 0.

If we denote

a4 = (h22 − kng22) (h33 − kng33)− (h23 − kng23)2 =
1

9ω2
,

a5 = (h13 − kng13) (h23 − kng23)− (h12 − kng12) (h33 − kng33) =
u3

9ω2
,

and consider

a1 = (h12 − kng12) (h23 − kng23)− (h22 − kng22) (h13 − kng13) = − 4u2
81ω2

,

we obtain the system corresponding to (13) as
u′1 = ∓ a4√

g11a24+2g12a4a5+2g13a1a4+2g23a1a5+g22a
2
5+g33a

2
1

= ∓ 1√
2ω
,

u′2 = ∓ a5√
g11a24+2g12a4a5+2g13a1a4+2g23a1a5+g22a

2
5+g33a

2
1

= ∓ u3√
2ω
,

u′3 = ∓ a1√
g11a24+2g12a4a5+2g13a1a4+2g23a1a5+g22a

2
5+g33a

2
1

= ± 4u2
9
√
2ω
.

(32)

We should note that when the minus(plus) sign is used in u′1 and u
′
2, the plus(minus) sign must be used in u

′
3.

Thus, solving (32) with the initial conditions u1(0) = 0, u2(0) = 0, u3(0) = 0 and substituting the solutions
into (30) yields a line of curvature β on M passing through the initial point β(0) = R (u1(0), u2(0), u3(0)) =
(1, 0, 1, 0) = P. If we choose the signs as −, −, + in (32), respectively, we have u′1 = 1, u′2 = u′3 = 0 at P ,
i.e. the tangent vector at P of β is obtained as

T = R1 =

(
0,

√
2√
3
, 0,

1√
3

)
.

We also have Ω1 =
(
− 23 , 0,−

1
3 , 0
)
, ρ1 = ρ2 = 0 at P . If we solve (32) with the given initial point via the

ode45 function of MATLAB R2014a and substitute the results into (30), we obtain the line of curvature.
This line of curvature has been projected into the hyperplane w = 0 and its projection is displayed in Figure
1 together with the projections of the parameter surfaces of the given hypersurface M .
First curvature
To obtain the first curvature of the line of curvature above, we need to substitute the known results into
(22). However, since

(h22 − kng22) (h33 − kng33)− (h23 − kng23)2 =
1

9ω2
6= 0,
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Figure 1: Line of curvature of the hypersurface M passing through the initial point P = (1, 0, 1, 0)

we must use the equations obtained by differentiating the second and third equations of (8) instead of the
fourth and fifth equations of (22). In this case, the system corresponding to (22) at P is obtained as

1 0 0 0 0
0 4

9 0 −1 0
0 0 1 0 −1

0 2
√
2

9 0 0 0
0 0 1√

2
0 0




u′′1
u′′2
u′′3

k1g 〈E,R2〉
k1g 〈E,R3〉

 =


0
−
√
2

9
0
0
0

 .

Hence, the solution of this system is obtained as

u′′1 = u′′2 = u′′3 = 0, k1g 〈E,R2〉 =

√
2

9
, k1g 〈E,R3〉 = 0

which yields

β′′(0) = Ω1 = R11 =

(
−2

3
, 0,−1

3
, 0

)
, n(0) =

β′′(0)∥∥β′′(0)
∥∥ = (

−2√
5
, 0,
−1√

5
, 0),

Ω2 = R111 =

(
0,−2

√
6

9
, 0,−

√
3

9

)
, ρ3 = ρ4 = 0.

Since N(P ) =
(
1√
2
, 0, 1√

2
, 0
)
, we find

E(P ) =

(
−1√

2
, 0,

1√
2
, 0

)
, D(P ) =

(
0,

√
3

3
, 0,−

√
6

3

)
.

Thus, we obtain

k1g(0) =

√
2

6
, k1(0) =

√
5

3
.

Second curvature
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Similarly, for the second curvature of β at P , we obtain the system corresponding to the system QX = S as
1 0 0 0 0
0 4

9 0 − 23 0

0 0 1 0
√
2
6

0 2
√
2

9 0 0 0

0 0
√
2
2 0 0




u′′′1
u′′′2
u′′′3(
k1g
)′

k2g

 =


0
0

−
√
2
9

0
0


whose solution is

u′′′1 = u′′′2 = u′′′3 = 0,
(
k1g
)′

(0) = 0, k2g(0) = −2

3
.

Thus, we obtain

β′′′(0) = Ω2 =

(
0,−2

√
6

9
, 0,−

√
3

9

)
, Ω3 = R1111 =

(
4

9
, 0,

1

9
, 0

)
.

Also, we find

b2(0) =

(
− 1√

5
, 0,

2√
5
, 0

)
, b1(0) =

(
0,

1√
3
, 0,−

√
6

3

)
, k′1(0) = 0, k′n(0) = 0.

Hence, the second curvature of β at P is obtained as

k2(0) =

〈
b1(0), β′′′(0)

〉
k1(0)

= −1

3

√
2

5
.

Third curvature
Similarly, for the third curvature of β at P , we need to solve the following system which corresponds to the
system QY =W: 

1 0 0 0 0
0 4

9 0 − 23 0

0 0 1 0
√
2
6

0 2
√
2

9 0 0 0

0 0
√
2
2 0 0




u
(4)
1

u
(4)
2

u
(4)
3(
k1g
)′′(

k2g
)′

 =


0
0
0
0
0

 .

If we solve this system, we obtain u(4)1 = u
(4)
2 = u

(4)
3 = 0,

(
k2g
)′

=
(
k1g
)′′

= 0, and β(4)(0) = Ω3 =
(
4
9 , 0,

1
9 , 0
)
.

Then, we find the third curvature of β as

k3(0) =

〈
b2(0), β(4)(0)

〉
k1(0)k2(0)

=

√
10

5
.

Remark 1 Let us reconsider the system (32) by choosing the signs −, −, +, respectively:
u′1 = − 1√

2ω
,

u′2 = − u3√
2ω
,

u′3 = 4u2
9
√
2ω
.

(33)

If we multiply the second and third equations of (33) by 4
9u2 and u3, respectively, and sum both sides of those

equations, we have
4

9
u2u
′
2 + u3u

′
3 = 0.
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Integration of the above equation yields 49u
2
2+u23 = c, where c is a nonnegative constant. The initial conditions

u1(0) = 0, u2(0) = 0, u3(0) = 0 ensure that c = 0 which gives us u2(s) = 0, u3(s) = 0. If we substitute these
results into the first equation of (33), we get u′1 = 1, i.e. u1(s) = s. Thus, the line of curvature β on M
passing through the initial point

β(0) = R (u1(0), u2(0), u3(0)) = (1, 0, 1, 0)

is given by

β(s) = R (s, 0, 0) =

(
cos

(√
2√
3
s

)
, sin

(√
2√
3
s

)
, cos

(
1√
3
s

)
, sin

(
1√
3
s

))
.

The curvatures and the Frenet vector fields of β were given in [6]. Comparison of the results reveals that
the present method is accurate enough. The minus sign arising in the second curvature is due to our first
binormal vector which is obtained in the opposite direction to the one given in [6].

6 Conclusion

We developed a method to obtain the lines of curvature on parametric hypersurfaces in Euclidean 4-space.
We showed that, even if such lines cannot be obtained analytically in general, it is possible to compute all
curvatures of a Frenet line of curvature by using the extended Darboux frame along the curve. We also
constructed a developable ruled hypersurface whose base curve is always a line of curvature. We verified the
applicability of our techique by providing an example.
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