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Abstract

In this paper, by relaxing the hypothesis of well-known Enestrom-Kakeya theorem, we obtain a
result which is applicable to the lacunary-type of polynomials and generalizes several well-known results
concerning the location of zeros of polynomials. In addition to this, we show by examples that our results
presents better information about the bounds of zeros of polynomials than some known results.

1 Introduction

Various experimental observations and investigations when translated into mathematical language lead to
mathematical models. The solution of these models could lead to problems of solving algebraic polynomial
equations of certain degree. The study of zeros of these algebraic complex polynomials is an old theme in
analytic theory of polynomials, has spawned a vast amount of research over the past millennium includes
its applications both within and outside of mathematics. In addition to having numerous applications,
this study has been the inspiration for much theoretical research (including being the initial motivation
for modern algebra). Algebraic and analytic methods for finding zeros of a polynomial, in general, can be
quite complicated, so it is desirable to put some restrictions on polynomials. This motivated the study of
identifying suitable regions in the complex plane containing the zeros of a polynomial when their coefficients
are restricted with special conditions. The most amusing problem of the algebra is to find the zeros of a
polynomial. But as the degree of a polynomial shoots up, it is very difficult to find the zeros of a polynomial.
This makes identification of regions containing zeros of a polynomial a significant problem. In 1829, Cauchy
[8] gave a very simple expression for the zero-bound in terms of the coefficients of a polynomial. In fact he
proved that all the zeros of a polynomial

P(2) = ap2" + apn12" '+ -+ arz4 a0, a,#0.
lie in the disc

|z| <1+ max |aj].
0<j<n—1

The remarkable property of this result is its simplicity of computations. In literature [15], there exists

several results concerning the bounds for zeros of polynomials. A classical result on the location of zeros of
a polynomial with restricted coeflicients known as Enestrom-Kakeya theorem (see section 8.3 of [19]):

Theorem 1 If P(z) = Z;'L:O ajzj s a polynomial of degree n such that
an = Ap—1 > -+ 2 a1 = ag >0,

then all the zeros of P(z) lie in |z| < 1.
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50 Location of the Zeros of Lacunary-Type Polynomials

In literature (see [1]-[24]) there exist several generalizations of Enestrom-Kakeya theorem. There is always
a need for better and better results in this subject because of its application in many areas including signal
processing, communication theory, cryptography, control theory, combinatorics and mathematical biology.
In this paper, by using standard techniques we establish regions in which zeros of a lacunary type polynomial

P(z):a0+2ajzj, 1<pu<mn, a#0
J=m

lie by putting certain restrictions on the real coefficients of a given lacunary- type polynomial. Joyal et al.
[11] extended Theorem 1 as they dropped the restriction on the hypothesis that all the coefficients be non
negative and proved the following Theorem.

Theorem 2 If P(z) = Z?:o a;jz7 is a polynomial of degree n such that
anzanfl 2 Zal Za07
then all the zeros of P(2) lie in

2] < dn =90+ [o]
|an|

Aziz and Zargar [1] extended Theorem 2 in the sense as they relaxed the hypothesis of Enestrom Kakeya
theorem and proved some interesting result. In fact they proved the following theorem.
Theorem 3 If P(z) = Z?:o ajz’ is a polynomial of degree n such that for some k > 1.
kan za/n—l Z"'zal 20/07

then all the zeros of P(2) lie in

Further, W. M. Shah and Liman [24] extended Theorem 3 to the polynomials with complex coefficients
by proving the following theorem.

Theorem 4 If P(z) = Z?:o a;jzl is a polynomial of degree n with complex coefficients such that for some
real B, larga; —B|<a <%, j=0,1,2,...,n and k>1,

klan| > |an—1| = -+ = [a1| = |aol,
then all the zeros of P(z) lie in

n—1
1
‘z -k - 1‘ < |{(k|an| — |ag|)(cos a + sin @) + |ap| 4+ 2 sin « g |aj|}.
an ;
Jj=0

Recently, Rather et al. [20] using standard techniques and obtained the result which gives regions
containing all the zeros of the polynomial with real coefficients and generalize several results concerning the
generalization of Enestréom Kakeya Theorem. In fact they proved the following theorem.

Theorem 5 If P(z) = Z?:o a;jzl is a polynomial of degree n with real coefficients such that for some kj > 1,
1 <7< r wherel <r <n,

klan 2 k2an—1 Z k3a/n—2 Z e 2 kran—r-l—l Z Ap—r Z e Z aj 2 ap,
then all the zeros of P(z) lie in

Gp—1

Z+k1717(k271)

an
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1

kran — (k2 = 1)|an— 1|+QZ Dan—j41] — ao + |aol
|an|

For r = 2 in Theorem 5, they obtained another result which answers the question raised by Professor N.
K. Govil regarding the determlnatlon of regions containing all the zeros of the polynomial at International
conference held at the University of Jammu, India, in 2007. In fact they proved the following theorem.

Theorem 6 If P(z) = Z?:o a;jz? is a polynomial of degree n with real coefficients such that for some ky > 1,
k2 2 ]-7

kian = kaan—1 > apno > -+ > a1 > ao,
then all the zeros of P(z) lie in

pt k= 1— (ky — 1) 2= 1‘

< (klan — (k}g — 1)|an,1| —ag + |a0|).

|an|

More recently Rather et al. [21] extended the Theorem 5 to the polynomial with complex coefficients
and proved the following result.

Theorem 7 If P(z) = Zn_o a;jz) is a polynomial of degree n with complex coefficients such that for some
real B, larga;j—p|<a<F, j=0,1,2,...,nandk>1,a,_;#0, j=0,1,2,...,7 wherel <r <n-—1,

kolan| > k1lan—1| > kelan—2| > -+ > kplan—r| > -+ > |a1| > |aol,

then all the zeros of P(z) lie in

‘z+ko—1—(k1—1)

an—l‘
Qn

1 ) ) T n
{(k0|an| — lag|)(cos a — sin ) + 2 sin « ij|an,j| + Z |an—;j

|an] j=1 j=r+1

—(k1 — Dan— 1|+2Z 1)]an— ]|+|a’0|}

2 Main Results

Although Theorems 5, 6 and 7 are applicable to the larger class of polynomials as compared to all other
Enestrom-Kakeya type results, but are not applicable to the polynomials whose one or two coefficients are
zero. For instance, if we consider the polynomial P(z) = 525 4 4z* 4+ 322 + 022 + 0z + 1, then one can note
that all Enestrom-Kakeya type results including Theorems 5, 6 and 7 are not applicable to this polynomial.
So it is interesting to look for the results applicable to such class of polynomials. Motivated by this, here we
establish the following results applicable to such class of polynomials of the type P(z) = ag + Z;L: u ajzj 1<
1< m,ag # 0. In this paper, we extend Theorem 5 and Theorem 7 to the lacunary-type polynomials with real
coefficients and thereby, obtain a result with relaxed hypothesis that give zero bound of the lacunary-type
polynomials with real coefficients. In fact, we prove the following theorem.

Theorem 8 Let P(z) = ag +Z?:u a;z?, 1 < p<n,ap# 0 is a polynomial of degree n with real coefficients
such that some k; > 1, j=p, p+1,..., p+r—1, where p <r < n,

k#an > ky,+1an71 > k#+2an72 > 2 ku+r71anfr+1 > Qp—r =2 [m > ag.
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Then all the zeros of P(z) lie in

(24 ky = 1) = (kugr — Dan—1/an

1 p+r—1
= m kuan — (k/H»l — 1)\an,1| +2 Z (kj — 1)|an+,kj\ —a,+ |au\ + 2‘@0‘
" j=ptl

We may apply Theorem 8 to the polynomial P(tz) to obtain the following result:

Corollary 1 Let P(z) = a0+Z?=H ajzj, 1 < pu<n,ag#0is a polynomial of degree n with real coefficients
such that somet >0 and k; > 1, j=p, p+1,..., p+7r—1, where u <r <,

k,utnan Z ku+1tn71an—1 Z k,u+2tn72an—2 Z e 2 k,u—i—r—ltni?urlan—r—i-l

Z f”_T(lnfr 2 . Z a#tﬂ 2 agp.

Then all the zeros of P(z) lie in

‘(z ol — Dt — (st — Dan—1/an

1 p+r—1 o o
< lan] (kutuan = (ku1 — Dlan—1][ +2 Z (kj — Dlansp—j| /" ' ap/t"H !
" j=pt1

Hlau] /8" + |aol /" + |a0|/tn>'

Taking r = 2 and ag > 0 in Corollary 1, we get the following result:

Corollary 2 Let P(z) = ao—l—Z?:# ajzl, 1< p<n,ay#0 is a polynomial of degree n with real coefficients
such that somet >0 and k, > 1, k41 > 1,

kutnan > ku«kltn_laznfl > tn_2an72 > > autu > ao > 0.
Then all the zeros of P(z) lie in
(z+ky = Dt" — (kpy1 — Dan—1/an| < kut* — (kug1 — 1)an—1/an + |ao|/t" 7" + |ao| /t".
Taking t = 1 in Corollary 2, we get following interesting result:

Corollary 3 Let P(z) = ag +Z?:u a;jz?,1 < p<mn,ag#0 is a polynomial of degree n with real coefficients
such that some k, > 1, k11 > 1,

kuan > ku+1a7L—1 Zp_2 2> 2 ay >ag > 0.
Then all the zeros of P(z) lie in
(2 4k —1) = (kus1 — Dan—1/an| < ky = (kus1 — Dan—1/an + 2|acl.
Taking k,4+1 = 1 in Corollary 3, we get following interesting result:

Corollary 4 Let P(z) = ao+ Z?:u ajzj7 1 < pu<n,ag#0 is a polynomial of degree n with real coefficients
such that some k, > 1,

k#anzanflZan722"'2a,u2a020~

Then all the zeros of P(z) lie in

’z—i—ku - 1‘ < kyu + 2|ag|.



Wani et al. 53

Since the results discussed above are applicable to a small class of lacunary-type polynomials , so it is
interesting to look for the results applicable to the large class of polynomials. Next, we extend Theorem 8
to the polynomials with complex coefficients and thereby, obtain a result with relaxed hypothesis that gives
zero bounds of the polynomials with complex coefficients. In fact, we prove the following theorem.

Theorem 9 Let P(z) = ap + Z;’l:u a;jz?, 1 < p < m, ap # 0 is a polynomial of degree n with complex
coefficients such that for some real 3, |arg a;j —B| <a <75, j=0,1,2,...,nand k; > 1, j = p—1, p,
p+1,..., p+r—1, where p <r <mn,

ku—1|a'n| > ku|an—1‘ > ku+1|an—2| >z ku+r—2|an—r+1| > ku+r—1|a'n—r| =2 |au| > ‘a0|- (1)

Then all the zeros of P(z) lie in

Ap—1 ‘ < 1

(24 s = 1) = (o — 1) o | (s lonl = e eosar + sna)

G an,
ptr—1 n—1
+2sin « Z kj\anﬂkj,ﬂ—i— Z |an+u,j,1|
j= Jj=p+r
ptr—1
—(ky — Dlan—1] +2 Z Dlantpu—j-1]+ lau| + 2laol |-

We may apply Theorem 9 to the polynomial P(tz) to obtain the following result:

Corollary 5 Let P(z) = ag + E;L:M a;jz?,1 < p < nyag # 0 is a polynomial of degree n with complex
coefficients such that for some real B, |arg aj — ] < a < 5, j=0,1,2,...,n andt > 0, k; > 1,
J=p—Lpup+1,...;0+r—1, where pu <r <mn,

ku—ltn|a'n| Z kutn_lmn—l‘ Z ku+1tn_2|an—2| Z o 2 ku+r—2tn_r+l‘an—r+l|

2 ku+r—1tnir|an—r| > 2 t#‘au| > |ag.

Then all the zeros of P(z) lie in

Ap—1 1 a, .
z+ (ky—1 — 1)t — (k, — 1) Zn < o { <k‘“_1|an| - t|nf;|t> (cosa + sina)
p+r—1 |(l . 1| n—1 |Cl N 1|
" ntu—j— 1@ntp—j—1]
+2sin « Z kj——— prY + Z Py
J=n J=p+r
(k- Lo H“il plontusal | ol ool
t] pn+1 tn—mn tn

Taking r = 1 in Corollary 5, we get the following result:
Corollary 6 Let P(z) = ag + Z?:# ajzd, 1 < pu < mn,ap # 0 is a polynomial of degree n with complex

coefficients such that for some real 3, |arg aj — B < a < 5, j =0,1,2,...,n and t > 0, k; > 1,

j:/J’_lvle
ku—1t"an| > kut" Han-1| > - > t#]a,| > |ao|-

Then all the zeros of P(z) lie in

n— 1
2o (et = Dt = (e = D™ < a[(kﬂ_1|an| _ lay] ) (cosa + sina)

Qn n A
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‘anﬂt j— 1]
—p+1

Jj=p+1

lan—1] | laul |ao
(- D e a0,

Taking t = 1 in Corollary 6, we get the following result:

Corollary 7 Let P(z) = ap + Z?:# ajzj, 1< pu<n,ay#0isa polynomial of degree n with complex
coefficients such that for some real B, |arg aj — | <a < T, 7=0,1,2,...,nand k; > 1, j = p—1,p,

ku—1|af’n| Z ku|an—1| Z Z |a'u| Z |Cl0|.

Then all the zeros of P(z) lie in

Ay 1 .
o (et = 1) = (= D% <l - fau(eosa + sina)
n—1
+2sin« ku|an,1|+ Z |an+u,j,1\
Jj=ptl

(ke — Dlana] + lag] + 2|ao|}

Taking k, =1 and k,_1 = k in Corollary 7, we get following interesting result:

Corollary 8 Let P(z) = ag + Z?:# ajzd, 1 <pu<mn,a #0isa polynomial of degree n with complex
coefficients such that for some real 3, |arg a; — | <a <3, 7=0,1,2,...,n and k > 1,

klan| = lan—1 = -+ = fan] = laol.
Then all the zeros of P(z) lie in

n—1
1 . .
z+ (k- 1)‘ < P {(k|an| —lau])(cosa +sina) + 2sina E l@ntp—j—1| | +lau| + 2laol |-
" i=n

Remark 1 For =1 in Theorems § and 9, we get the Theorems 5 and 7 respectively.

3 Computations and Analysis

In this section, we present some examples of a polynomial to show that Theorem 8 gives better information
about the location of zeros than Cauchy’s Theorem. It is worth mentioning that all existing Enestrom-Kakeya
type results are not applicable for these polynomials.

Example 1 Let P(z) = 102 + 1022+ 1. By taking r = 2, k,, = 16/15, k,41 = 8/7 in Theorem 8, it follows
that all the zeros of P(z) lie in the disc |z — 1= < 1.2. Whereas if we use Cauchy’s Theorem, it follows that
all the zeros of P(z) lie in the disc |z| < 2.

Example 2 Let P(z) = 32 +2.82% +2.62%2 + 1. By taking r = 2, k, = 6/5, k,41 = 3/2 in Theorem 8,
it follows that all the zeros of P(z) lie in disc |z — 0.26] < 1.06. Whereas if we use Cauchy’s Theorem, it
follows that all the zeros of P(z) lie in the disc |z| < 2.06.

From the above examples, it is evident that our results give better bound than the bound obtained by
using Cauchy’s Theorem.
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4 Lemma

For the proofs of the above results, we need the following lemma which is due to Govil and Rahman [10].

Lemma 1 If for some real (3,
|argaj_ﬁ|§a§gv aj#ov

then, for any positive real numbers t1 and to,

[tiaj — taaj 1| < [tila;] = talaj 1| cosa + (tila;| + talaj—1]) sin .

5 Proof of Main Results

Proof of Theorem 8. Let P(2) = ag —I—Z?ZH a;jz?, 1 < p<n,ag# 0 is a polynomial of degree n with real
coefficients such that some k; > 1, j =p, p+1,..., p+r —1, where p < r < n. Consider the polynomial

F(z) = (1-2)P(2)
= —a,2"T + (an —apn-1)2"+ -+ (an—y — @p—r_1)z""" + ...
+(aut1 — a,) 2" 4+ a2t — agz + ag
= —a, 2"+ (kyan — kpr1an—1 — (ky — Dan + (kut1 — Dan—1)z"
pr1n1 = Kug2an-2 = (kus1 — Dap—1 + (kurz — 1)an—2)z""" + ...

+(k

+( ;L+r—2an—r+2 - k,u+r—lan—r+1 - (k,u+r—2 - 1)an—r+2 + (k[L+T—1 - 1)an—r+1)znir+2

+( ptr—10n—r4+1 = Gn—r — (klﬁ'7 1= l)an—T-‘rl)ZniTJrl + (an—r - an—r+1)znir +..
(

1
+(ay41 — au)z‘”' +a,2" — apz + ao,

which implies that

|F(2)| = |=anz"t = (ky — D)anz" + (kpan — kpp10n-1)2" + (kg1 — Dag—12"
+(kys10n-1 — kpyg2an—2)2" — (kugp1 — Dap 12" + (kuyo — Dan 22"t + ...
+(Bpgr—2an—ri2 = kpgpr—10n—r31) 2" = (kupr2 — Dan_pq22" "2
+(k ptr—1— )an—r+1znir+2 + (k/t+T—1an—r+1 - an—r)znir+1 - (ku-&-r—l —Dap—rs12
(

— 1
F(tnr — Apep—1)2" "+t (g — ap) 2T+ ap2t — agz + agl,

n—r+1

that is
}F(Z)‘ > |Z|n{(z + ku - 1)an - (le-l - 1)an—1‘ - (|kuan - ku+1an—1| + |ku+1a'n—1 - ku+2an—2|/‘z|

e = Ulan-11/12] + Pz = Ulan-al/I2] + -+ + Poutr—2an-rs2 — byt -1 rsal/ |27
+‘k,u+r—2 - 1||an—r+2‘/|Z‘T72 + |k,u+r—1an—7’+1 - an—r|/|z|T71 + |ku+r—l - 1Han—r+1|/|z|T71

‘Han—r - a,L_T.+1|/|Z|T +oeet |aﬂ+1 - aﬂ|/|z|n7#71

Hlag /|24 + aol/|2]" 7 + a0|/|2n> }
By using the hypothesis, we have for |z| > 1,

[F(2)] = Z|n{|(2 +ky = Dan — (kuyr — an—1] — <kuan — kugran-1 + kppran—1 — kugoan o

F(kut1 = Dlan—1] + (kut2 = Dlan—2| + - + kpjr—20n—r12 = kysr—10n—r41
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+(ku+7'—2 - 1)|an—’r'+2| + ku-}-’r'—lan—'r-i-l — Qp—r + (ku+7'—1 - 1|an—7'+1|

+an—r — Qp—r41 +o 4+ Qu+1 — Ay + |aN| + 2|a’0|) }’

that is,
n 1
|F(z)} > lanlz| {|(Z +ky = 1) = (kuyr = Dap—1/an| — Tanl <kuan = (kpg1 = Dan—1|
ptr—1
+2 Z Dlantp—jl = ap + lau] + 2|a0|)} >0,
=p+1
if

(24 ky = 1) = (kuy1 — Dan—1/an

1
> m (k#an - (kﬂ+1 — 1)‘an71|
n

p+r—1
2y (kj—l)lan+uj|—au+|au+2a0>~
Jj=p+1

This shows that those zeros of F'(z) whose modulus is greater than 1 lie in

(24 ky = 1) = (kuyr — Dan—1/an

1
< Tan] <k#an — (kps1 — Dan—1]

p+r—1
+2 ) (k= Dlanguj| — ap+ lau| + 2|a(1|)~
Jj=ptl

But those zeros of F'(z), whose modulus is less than or equal to 1 already lie in this region. Hence it follows
that all the zeros of F'(z) and therefore of P(z) lie in

1

(e 4= 1) = s = Danafan| < 1o (K = G = Dl

p+r—1
+2 32 (8 = Dlanins] = o+ oyl +2aol).
Jj=ptl

This completes the proof of Theorem 8. m

Proof of Theorem 9. Let P(2) =ag+3_, a;27, 1 < <n, ap # 0 is a polynomial of degree n with

real coefficients such that some k; > 1, j = p—1, p+1,..., p+r —1, where p < r < n. Consider the
polynomial
F(z) = (1-2)P(2)

= 02" (= )" F (A — G 1)2" T L
+(aps1 — ap) 2" + a2t — apz + ag
= —a,2" 4+ (kp—1an — kpan—1 — (ky—1 — Day, + (ky — 1)ap—1)2"
+(kpan—1 — kys10n—2 — (ky — L)an—1 + (kyy1 — 1)an_2)z”*1 +...
+(kytr—2an—r+1 — kptr—1an—r — (kygr—2 — D)an—r41 + (kygr—1 — 1)ap_)z" "
+(Bpsr—1n—r — an—r-1 — (Fptr—1 — D)an—r)2" " + (@n—r—1 — @pr_2)2" "1+ ...
+(aps1 — ap)2" T+ a2t — aoz + ao,
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which implies that

()]

that is,

o7

= | —apz"t — (ku—1 — Danz" + (ky—1ay, — kpan—1)2" + (k, — )a,—12"
+(kpan—1 = kurian-2)2" — (ku - Da, 12" + (kps1 — Dan—22" "1+ ...
H(kutr—20n—r1 = lerrflanfr)zn_H—l — (kygr—2 — 1)an7r+1z"_7'+1
+(kptr—1 — )anfrzniﬂrl + (kptr—1an—r — @p—r—1)2""" = (kygr—1 — Dan_p2"""
H(an—r1 = Apr2)2" T e (@ — @) 2T @zt = agz + agl

’F(Z)} Z Z|n{|(z + ku—l - 1)an - (ku - 1)an—1| - (|ku—1an - kuan—1| + |kuaﬂrb—1 - ku-{—lan—2|/|z|

+|ky — 1|an—

/1] + s = Ulan—al/l2] + -+ + [Bpsr—20n—rs1 = Kppr—1an—| /]2

+|ku+r72 - 1Han,T+1|/|z|T*1 + |ku+r71 - 1Hanfr|/|Z|T71 + |k#+r71anﬂ“ = an—r—1|/]2|"
Hhpir—1 = Ulan—v|/|2]" + lan—r—1 — an_rl/|2]"T + -+ ap1 — apl/|z]" 7

Hapl/|21" ™" + laol /|2]"~* + Iao|/|z|”> }

Let |z| > 1 so that 1/|z| < 1. Then we have

|F(Z)| = |Z|n{|(z + ku—1 — Dap — (ky — 1)an—1| — <|ku—1an = kpan 1|+ [kuan -1 — kpp1ans|

+|ku —1fan—1] + |ku+1 = lan—o|+--+ |Kptr—2an—rt1 — Kptr—1an—r|

+|ku—&-r—2 - 1‘

|an—ri1]| + |k,u+r—l —1|an_r| + |ku+r—1an—r —Qp_r1| + |ku+r—l —1f|an—_|

+|an—r—1 - an—r—2| +eeet |au+1 - au| + ‘au| + 2|a0> }

Applying Lemma 1, we have for |z] > 1,

FG)| 2 |an|z|“{]<z+ku_1 D)= (- - [(|ku_1|an| — Kl
+|kﬂ|an71| - ku+1‘an72|| ey ’ku+r72‘anfr+1| - ku+r71|anfrl‘ + |ku+r71|anﬂ”| - |an,r,1||
Hlan—r1| = lan—r-l] - llousa] = lagl|) cos @+ (Ku-lan] + ulan—1] + Fulan1]
+hutilan—o| + -+ kppr—2l@n—ri1| + kpgpr—ilan—r| + Epgr—1lan—r| + [an—r—1| + |an—r_1]
Hlan- o]+ + o] + |ag]) sina = (B, = 1lan-1]
ptr—1

+2Z

which in view of (1), yields,

|F(2)

> |an||z|"{1<z+ku1—1>—<ku—1>

+2sin «

Dlansp—j—1|+ lau| + 2|a0|} }

Ap—1

‘_[( u—1]an| — lay|)(cosa + sina)

p+r—1

Z k; |an+u Jj— 1+ Z ‘an-s-u —j— 1]

J=p+r
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p+r—1
—(ky = Dlan—1| +2 Z Dlan i 1|+|aul+2lao|”
> 0
if
Ay 1 .
(z4+ky-1—1)—(k,—1) p L — [(k#_1|an| — |ay|)(cos o + sin &)
p+r—1
+2sin o Z k’ \anﬂt —j— 1|+ Z |an+u i— 1|
J=p+r
pt+r—1
—(ky — D]an—1|+2 Z Dlanyp—j—1| + lay| + 2laol |-

This shows that those zeros of F'(z) whose modulus is greater than 1 lie in

(z+ky1—1)— (ku — 1)"271 < ai |:(k#1|an| — |ay])(cos o + sin o)
p+r—1
+2sina Z kjlantp—j—1|+ Z |an4p—j-1]
J=p+r
pt+r—1
—(ky — Dlan—1]|+2 Z Dlantp—j—1| + lag| + 2|aol|-

But those zeros of F(z) whose modulus is less than or equal to 1 already lie in this region. Hence it follows
that all the zeros F'(z) and therefore of P(z) lie in

(z+ky1—1)—(k, — 1)6‘2;1 ‘ < % [(k#1|an| — |ap])(cos o+ sin o)
p+r—1 n—1
+2sina Z kjlantp—j—1|+ Z | p—j—1]
j= J=ptr
p+r—1
—(ky = Dlan-1]+2 Y (kj = Dlangp—j-1| + lau| + 2Jaol |-
J=p

This completes the proof of Theorem 9. m
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