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Abstract

In this paper, some lower bound estimates for the maximum modulus of the polar derivative DαP(z)
of a polynomial P(z) of degree n not vanishing in the region |z| > k, k ≥ 1 are established. The obtained
results produce inequalities that are sharper than the ones previously known.

1 Introduction

Polynomial inequalities have pertinent applications in all those mathematical models whose solutions lead
to problems of evaluating how large or small a derivative of an algebraic polynomial can be in terms of a
maximum modulus of a polynomial and bounds of such problems are of some practical importance. since
there are no closed formulae for meticulous evaluation of these bounds, whatever is available in literature
is in the form of approximations. For practical importance, Mathematicians only designate methods for
obtaining approximate bounds. When computed efficiently, these approximate bounds are quite acceptable
for the needs of investigators and scientists. There is a desire to look for better and improved bounds. This
inclination of getting improved bounds influences our work. In this paper, we refine and generalise some

Turán type inequalities for polynomials. To begin with, let P(z) =
n
∑

ν=0

cνzν be a polynomial of degree n

and P ′(z) be its derivative, then it was shown by Turán [14] that if P(z) has all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥
n

2
max
|z|=1

|P(z)| . (1)

For a polynomial P(z) =
n
∑

ν=0

cνzν of degree n having all its zeros in |z| ≤ k, k ≥ 1, Govil [6] proved that

max
|z|=1

|P ′(z)| ≥
n

1 + kn
max
|z|=1

|P(z)| . (2)

The result is best possible and equality in (2) holds for P(z) = zn +kn. In literature there exists several
extensions and generalizations of inequalities (1) and (2) (for reference see ( [1]- [3], [13] ). Dubinin [5]
obtained the refinement of inequality (1) by introducing some of the coefficients of P(z). In fact, he proved
that if P(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then

max
|z|=1

|P ′(z)| ≥
1

2

(

n +
|cn| − |c0|

|cn|+ |c0|

)

max
|z|=1

|P(z)| . (3)

For a polynomial P(z) of degree n, the polar derivative DαP(z) of P(z) with respect to a complex number
α is defined as

DαP(z) := nP(z) + (α − z)P ′(z).
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DαP(z) is a polynomial of degree at most n− 1 and it generalizes the ordinary derivative in the sense that

lim
α→∞

DαP(z)

α
= P

′(z). (4)

Bernstein type inequalities on complex polynomials have been extended from ordinary derivative to polar
derivative of complex polynomials. For reference, see( [2], [4], [7], [8]). P. Kumar [9] proved a polar derivative
inequality for the class of polynomials having all its zeros in |z| ≤ k, k ≥ 1, by including the coefficients and
considering the modulus of each individual zero of the underlying polynomial. Kumar, in fact proved that if

P(z) =
n
∑

ν=0

cνzν = cn

n
∏

ν=1

(z − zν) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for

any complex number α with |α| ≥ k

max
|z|=k

|DαP(z)| ≥

[

2(|α| − k)

1 + kn
+ (|α| − k)

(|cn|k
n − |c0|)(k − 1)

(1 + kn)(|cn|kn + k|c0|)

] n
∑

ν=1

k

k + |zν|
max
|z|=1

|P(z)| .

Since k ≥ 1, therefore k

k+|zν |
≥ 1

2
, for 1 ≤ ν ≤ n , the above inequality in particular gives the following

result.

Theorem 1 If P(z) =
n
∑

ν=0

cνzν is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for

any complex number α with |α| ≥ k,

max
|z|=1

|DαP(z)| ≥ n

(

|α| − k

1 + kn

) (

1 +
(|cn|k

n − |c0|)(k − 1)

2(|cn|kn + k|c0|)

)

max
|z|=1

|P(z)| . (5)

Very recently, A. Mir et al. [10] proved the following result which provides an improvement over Theorem
1.

Theorem 2 If P(z) =
n
∑

ν=0

cνzν is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for

any complex number α with |α| ≥ k,

max
|z|=1

|DαP(z)| ≥ n

(

|α| − k

1 + kn

) (

1 +
kn|cn| − |c0|

n(kn|cn| + |c0|)

)

×

(

1 +
(|cn|k

n − |c0|)(k − 1)

2(|cn|kn + k|c0|)

)

max
|z|=1

|P(z)| . (6)

Dividing both sides by |α| and letting |α| → ∞, inequality (6) gives

max
|z|=1

|P ′(z)| ≥

(

n

1 + kn

)(

1 +
kn|cn| − |c0|

n(kn|cn| + |c0|)

)

×

(

1 +
(|cn|k

n − |c0|)(k − 1)

2(|cn|kn + k|c0|)

)

max
|z|=1

|P(z)| . (7)

2 Main Results

In this paper, we first present the following Turán type inequality for a polynomial providing a refinement
as well as generalization of Theorem 2. More precisely, we prove.

Theorem 3 If P(z) = zs(c0 + c1z + ... + cn−sz
n−s) is a polynomial of degree n having all its zeros in

|z| ≤ k, k ≥ 1, then for any complex number α with |α| ≥ k,

max
|z|=1

|DαP(z)| ≥

(

|α| − k

1 + kn−s

)(

n + s +
kn−s|cn−s| − |c0|

kn−s|cn−s|+ |c0|

)

×

(

1 +
(|cn−s|k

n−s − |c0|)(k − 1)

2(|cn−s|kn−s + k|c0|)

)

max
|z|=1

|P(z)| . (8)
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In view of (4), the result is sharp in limiting case when |α| → ∞ as shown by the polynomial P(z) =
zn + kn.

Remark 1 Taking s = 0 in Theorem 3, it reduces to Theorem 2 and dividing inequality (8) both sides by
|α| and letting |α| → ∞, we get the following refinement as well as generalization of inequality (7).

Corollary 1 If P(z) = zs(c0 + c1z + ... + cn−sz
n−s) is a polynomial of degree n having all its zeros in

|z| ≤ k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≥

(

1

1 + kn−s

) (

n + s +
kn−s|cn−s| − |c0|

kn−s|cn−s| + |c0|

)

×

(

1 +
(|cn−s|k

n−s − |c0|)(k − 1)

2(|cn−s|kn−s + k|c0|)

)

max
|z|=1

|P(z)| .

The result is sharp and equality holds for P(z) = zn + kn.

Theorem 3 gives much better bound than the bound obtained from Theorem 2. We show this with the
help of following example.

Example 1 Consider P(z) = z2(z2 −2). Here we take k = 2 and α = 3, then clearly P(z) is a polynomial
of degree 4 having all its zeros in |z| ≤ 2 with 2-fold zeros at origin. Using Theorem 2, we see that

max
|z|=1

|DαP(z)| ≥ 1.32,

where as Theorem 3 gives

max
|z|=1

|DαP(z)| ≥ 4.2,

which is better than the bound obtained from Theorem 2.

Next, we present the following generalization of Theorem 3. Besides, the obtained result sharpens in-
equality (5) as well.

Theorem 4 If P(z) = zs(c0 + c1z + ... + cn−sz
n−s) is a polynomial of degree n having all its zeros in

|z| ≤ k, k ≥ 1, then for any complex number α with |α| ≥ k and 0 ≤ t ≤ 1,

max
|z|=1

|DαP(z)| ≥

(

|α| − k

1 + kn−s

)(

n + s +
kn−s|cn−s| − tm− |c0|

kn−s|cn−s| − tm + |c0|

) [

(1 +
Λ1

2
) max
|z|=1

|P(z)|

+
1

2kn
(kn−s − 1 − Λ1)tm

]

−

(

|α| − k

2kn

) (

kn−s|cn−s| − tm − |c0|

kn−s|cn−s| − tm + |c0|

)

tm

+
(|α|(n − s) + k(n + s))

2kn
tm (9)

where

m = min
|z|=k

|P(z)| and Λ1 =
(|cn−s|k

n−s − |c0| − tm)(k − 1)

(|cn−s|kn−s + k|c0| − tm)
. (10)

In view of (4), the result is sharp in limiting case when |α| → ∞ as shown by the polynomial P(z) = zn +kn.

Remark 2 Taking t = 0, Theorem 4 reduces to Theorem 3. Also by taking k = 1 and s = 0 in Theorem 3,
we obtain
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Corollary 2 If P(z) =
n
∑

ν=0

cνzν is a polynomial of degree n having all its zeros in |z| ≤ 1, then for any

complex number α with |α| ≥ 1 and 0 ≤ t ≤ 1

max
|z|=1

|DαP(z)| ≥
n

2

{

(|α| − 1)max
|z|=1

|P(z)| + (|α|+ 1)tm

}

+

(

|α| − 1

2

)(

|cn| − tm − |c0|

|cn| − tm + |c0|

) (

max
|z|=1

|P(z)| − tm

)

. (11)

In view of (4), the result is sharp in limiting case when |α| → ∞ as shown by the polynomial P(z) = zn +1.

Remark 3 Dividing both sides of inequality (11) by |α| and let |α| → ∞, we get the sharp refinement of
inequality (3). By dividing both sides of inequality (9) by |α| and let |α| → ∞, we get the following result.

Corollary 3 If P(z) =
n
∑

ν=0

cνzν is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for

any complex number α with |α| ≥ k

max
|z|=1

|P ′(z)| ≥

(

1

1 + kn−s

)(

n + s +
kn−s|cn−s| − tm − |c0|

kn−s|cn−s| − tm + |c0|

)[

(1 +
Λ1

2
) max
|z|=1

|P(z)|

+
1

2kn
(kn−s − 1 − Λ1)tm

]

−
1

2kn

(

kn−s|cn−s| − tm − |c0|

kn−s|cn−s| − tm + |c0|

)

tm

+
(n − s)

2kn
tm,

where Λ1 is defined in (10).

Corollary 4 The result is sharp and equality holds for P(z) = zn + kn.

Remark 4 For t = 0, Corollary 3 reduces to Corollary 1.

Theorem 4 provides much better information than Theorem 1. We show this with the help of following
example.

Example 2 Consider P(z) = z2(z + 5

4
). Here we take k = 2 and α = 3, then clearly P(z) is a polynomial

of degree 3 having all its zeros in |z| ≤ 2 with 2-fold zeros at origin. Also

max
|z|=1

|P(z)| =
9

4
and min

|z|=2

|P(z)| = 3.

Using Theorem 1, we see that

max
|z|=1

|DαP(z)| ≥ 1.12,

where as Theorem 4 for t = 1 gives

max
|z|=1

|DαP(z)| ≥ 3.76,

which is better than the bound obtained from (5).

3 Lemmas

For the proof of the main results, we need the following lemmas. The first lemma is a simple deduction from
Maximum Modulus Principle (see [12]).
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Lemma 1 If P(z) is a polynomial of degree at most n, then for R ≥ 1

max
|z|=R

|P(z)| ≤ Rn max
|z|=1

|P(z)| .

The following lemma is due to A. Mir [11].

Lemma 2 If P(z) =
n
∑

ν=0

cνzν , is a polynomial of degree n having no zero in |z| < 1, then for R ≥ 1 and

0 ≤ t ≤ 1,

max
|z|=k

|P(z)| ≤
(1 + Rn)(|c0|+ R|cn| − tm1)

(1 + R)(|c0| + |cn| − tm1)
max
|z|=1

|P(z)| −

(

(1 + Rn)(|c0| + R|cn| − tm1)

(1 + R)(|c0| + |cn| − tm1)
− 1

)

tm1,

where m1 = min
|z|=1

|P(z)| .

Next lemma is due to Kumar [9].

Lemma 3 If P(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=k

|P(z)| ≥

(

2kn

1 + kn
+

kn(|cn|k
n − |c0|)(k − 1)

(1 + kn)(|cn|kn + k|c0|)

)

max
|z|=1

|P(z)| .

Lemma 4 If P(z) = zs(c0 + c1z + ... + cn−sz
n−s), 0 ≤ s ≤ n, is a polynomial of degree n having all its

zeros in |z| ≤ 1, then for any complex number α with |α| ≥ 1 and |z| = 1,

|DαP(z)| ≥ (|α| − 1)

{

n + s

2
+

|cn−s| − |a0|

2(|an−s| + |a0|)

}

|P(z)| .

The above lemma is due to Govil and Kumar [8].

4 Proofs of the Theorems

Proof of Theorem 3. Since P(z) has all its zeros in |z| ≤ k, k ≥ 1, therefore all the zeros g(z) = P(kz)

lie in |z| ≤ 1. Hence by applying Lemma 4 to the polynomial g(z) and noting that |α|
k

≥ 1, we obtain

max
|z|=1

|Dα

k
g(z)| ≥

(

|α|

k
− 1

){

n + s

2
+

(kn−s|cn−s| − |c0|)

2(kn−s|cn−s| + |c0|)

}

max
|z|=1

|g(z)|,

or equivalently,

max
|z|=1

∣

∣

∣
nP(kz) +

(α

k
− z

)

kP
′(kz)

∣

∣

∣
≥

(

|α| − k

k

) {

n + s

2
+

(kn−s|cn−s| − |c0|)

2(kn−s|cn−s| + |c0|)

}

max
|z|=1

|P(kz)| .

This gives

max
|z|=k

|DαP(z)| ≥

(

|α| − k

k

){

n + s

2
+

(kn−s|cn−s| − |c0|)

2(kn−s|cn−s| + |c0|)

}

max
|z|=k

|P(z)| . (12)

Now by using Lemma 1 to the polynomial DαP(z) which is of degree n − 1, we conclude that

max
|z|=k

|DαP(z)| ≤ kn−1 max
|z|=1

|DαP(z)| . (13)

Using inequality (13) in inequality (12), we obtain for |α| ≥ k,

max
|z|=1

|DαP(z)| ≥

(

|α| − k

kn

){

n + s

2
+

(kn−s|cn−s| − |c0|)

2(kn−s|cn−s| + |c0|)

}

max
|z|=k

|P(z)| . (14)
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By hypothesis P(z) = zsh(z), where h(z) = (c0 +c1z+ ...+cn−sz
n−s) is a polynomial of degree n−s having

all its zeros in |z| ≤ k, k ≥ 1, therefore, by applying Lemma 3 to the polynomial h(z), we get

max
|z|=k

|h(z)| ≥

{

2kn−s

1 + kn−s
+

kn−s(|cn−s|k
n−s − |c0|)(k − 1)

(1 + kn−s)(|cn−s|kn−s + k|c0|)

}

max
|z|=1

|h(z)|.

Also

max
|z|=k

|h(z)| =
1

ks
max
|z|=k

|P(z)|

and

max
|z|=1

|h(z)| = max
|z|=1

|P(z)| .

Replacing these in above inequality, we get

max
|z|=k

|P(z)| ≥

{

2kn

1 + kn−s
+

kn(|cn−s|k
n−s − |c0|)(k − 1)

(1 + kn−s)(|cn−s|kn−s + k|c0|)

}

max
|z|=1

|P(z)| . (15)

Inequality (15) in conjunction with inequality (14) yields for |z| = 1 and |α| ≥ k,

max
|z|=1

|DαP(z)| ≥

(

|α| − k

kn

) {

n + s

2
+

(kn−s|cn−s| − |c0|)

2(kn−s|cn−s| + |c0|)

}

×

{

2kn

1 + kn−s
+

kn(|cn−s|k
n−s − |c0|)(k − 1)

(1 + kn−s)(|cn−s|kn−s + k|c0|)

}

max
|z|=1

|P(z)| ,

which on simplification gives for |z| = 1 and |α| ≥ k,

max
|z|=1

|DαP(z)| ≥

(

|α| − k

1 + kn−s

) (

n + s +
kn−s|cn−s| − |c0|

kn−s|cn−s| + |c0|

)

×

(

1 +
(|cn−s|k

n−s − |c0|)(k − 1)

2(|cn−s|kn−s + k|c0|)

)

max
|z|=1

|P(z)| .

This completes the proof of Theorem 3.

Proof of Theorem 4. By hypothesis P(z) has all its zeros in |z| ≤ k, k ≥ 1. If P(z) has a zero on
|z| = k, then m = min

|z|=k

|P(z)| = 0 and result follows from Theorem 3 in this case. So, we assume that p(z)

has all its zeros in |z| < k, so that m > 0. Now if f(z) = P(kz) , then the polynomial f(z) has all its zeros
in |z| < 1. Also m = min

|z|=k

|p(z)| = min
|z|=1

|f(z)|, this implies for every λ ∈ C with |λ| < 1,

|mλzn| ≤ |f(z)|, for |z| = 1.

It follows by Rouche’s Theorem that the polynomial g(z) = f(z) − λmzn has all zeros in |z| < 1. Applying

Lemma 4 to the polynomial g(z) = f(z) − λmzn and noting that |α|
k

≥ 1, we get

∣

∣Dα

k
(f(z) − λmzn)

∣

∣ ≥

(

|α|

k
− 1

){

n + s

2
+

|kn−scn−s − λm| − |c0|

2(|kn−scn−s − λm| + |a0|)

}

|f(z) − λmzn| .

Using the fact that s(x) = x−|c|
x+|c| is non-decreasing function of x and |kn−scn−s − λm| ≥ kn−s|cn−s| − |λm|,

we obtain for |α|/k ≥ 1, |λ| < 1 and |z| = 1,

∣

∣

∣

∣

Dα

k
f(z) −

nmαλ

k
zn−1

∣

∣

∣

∣

≥

(

|α| − k

2k

){

n + s +
kn−s|cn−s| − |λ|m− |c0|

kn−s|cn−s| − |λ|m + |c0|

}

|f(z) − λmzn|. (16)
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Since all the zeros of f(z)−λmzn lie in |z| < 1, therefore it follows by Laguerre’s Theorem that all the zeros
of Dα

k
f(z) − nmαλ

k
zn−1 lie in |z| < 1. This implies

∣

∣Dα

k
f(z)

∣

∣ ≥
nmαλ

k
|z|n−1 for |z| ≥ 1. (17)

Choosing argument of λ in the left hand side of (16) such that

∣

∣

∣

∣

Dα

k
f(z) −

nmαλ

k
zn−1

∣

∣

∣

∣

= |Dα

k
f(z)| −

nm|α||λ|

k
for |z| = 1,

which is possible by (17), we get for 0 ≤ t ≤ 1, |α| ≥ k and |z| = 1

∣

∣Dα

k
f(z)

∣

∣ −
nm|α|t

k
≥

(

|α| − k

2k

) {

n + s +
kn−s|cn−s| − tm − |c0|

kn−s|cn−s| − tm + |c0|

}

(|f(z)| − tm).

This gives for |α| ≥ k and |z| = 1,

max
|z|=k

|DαP(z)| ≥

(

|α| − k

2k

)(

n + s +
kn−s|cn−s| − tm− |c0|

kn−s|cn−s| − tm + |c0|

)

max
|z|=k

|P(z)|

−

(

|α| − k

2k

)(

kn−s|cn−s| − tm − |c0|

kn−s|cn−s| − tm + |c0|

)

tm +
(|α|(n − s) + k(n + s))

2k
tm. (18)

Since f(z) = P(kz) has all its zeros in |z| ≤ k, k ≥ 1 with s-fold zeros at origin, therefore the polynomial
q(z) = znf(1/z) is a polynomial of degree n − s having no zero in |z| < 1. Hence by applying Lemma 2 we
obtain for k ≥ 1 and 0 ≤ t ≤ 1,

max
|z|=k

|q(z)| ≤
(1 + kn−s)(kn|cn−s|+ ks+1|c0| − tm′)

(1 + k)(kn|cn−s|+ ks|c0| − tm′)
max
|z|=1

|q(z)|−

(

(1 + kn−s)(kn|cn−s| + ks+1|c0| − tm′)

(1 + k)(kn|cn−s| + ks|c0| − tm′)
− 1

)

where m′ = min
|z|=1

|q(z)|.

Also

m′ = min
|z|=1

|q(z)| = min
|z|=1

|znp(k/z)| = min
|z|=k

|P(z)| = min
|z|=1

|f(z)| = m,

max
|z|=1

|q(z)| = max
|z|=1

|f(z)| = max
|z|=k

|P(z)| ,

and

max
|z|=k

|q(z)| = kn max
|z|=1

|P(z)| .

Replacing these in above inequality, we get

max
|z|=k

|P(z)| ≥

(

(1 + k)(kn−s|cn−s|+ |c0| − tm)

(1 + kn−s)(kn−s|cn−s| + k|c0| − tm)

)

kn max
|z|=1

|P(z)|

+

(

1 −
(1 + k)(kn−s|cn−s| + |c0| − tm)

(1 + kn−s)(kn−s|cn−s| + k|c0| − tm)

)

tm

=

[

2kn

1 + kn−s
+

kn(|cn−s|k
n−s − |c0| − tm)(k − 1)

(1 + kn−s)(|cn|kn−s + k|c0| − tm)

]

max
|z|=1

|P(z)|

+

[

kn−s − 1

kn−s + 1
−

(|cn−s|k
n−s − |c0| − tm)(k − 1)

(1 + kn−s)(|cn−s|kn−s + k|c0| − tm)

]

tm. (19)
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Inequality (18) in conjunction with inequality (19) and Lemma 1 yields for |α| ≥ k and 0 ≤ t ≤ 1,

max
|z|=1

|DαP(z)| ≥

(

|α| − k

2kn

) (

n + s +
kn−s|cn−s| − tm − |c0|

kn−s|cn−s| − tm + |c0|

)[{

2kn

1 + kn−s
+

knΛ1

1 + kn−s

}

max
|z|=1

|P(z)|

+

{

kn−s − 1

kn−s + 1
−

Λ1

1 + kn−s

}

tm

]

−

(

|α| − k

2kn

) (

kn−s|cn−s| − tm− |c0|

kn−s|cn−s| − tm + |c0|

)

tm

+
(|α|(n − s) + k(n + s))

2kn
tm,

where Λ1 is defined in (10).
The above inequality after a simplification gives for |α| ≥ k and 0 ≤ t ≤ 1,

max
|z|=1

|DαP(z)| ≥

(

|α| − k

1 + kn−s

) (

n + s +
kn−s|cn−s| − tm − |c0|

kn−s|cn−s| − tm + |c0|

)

[

(1 +
Λ1

2
) max
|z|=1

|P(z)|

+
1

2kn
(kn−s − 1 − Λ1)tm

]

−

(

|α| − k

2kn

) (

kn−s|cn−s| − tm − |c0|

kn−s|cn−s| − tm + |c0|

)

tm

+
(|α|(n − s) + k(n + s))

2kn
tm.

This completes the proof of Theorem 4.
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