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Abstract

In this paper we prove some results concerning the bounds for the zeros of polynomials and as a
special case obtain a generalization of the well-known Enestrom-Kakeya theorem. Our result mainly
generalizes as well as refines the result of Joyal et al. [Bull. Canad. Math., 10(1967), 53-63].

1 Introduction

Let P(z) := apz™ + an_12"" 1 + ...+ a1z + ap be a polynomial of degree n where ag, ay, ..., a, € C. Then by
the Fundamental Theorem of Algebra, P(z) has exactly n number of zeros. Thus "Fundamental Theorem
of Algebra" gives only exact number of zeros of a polynomial but says nothing regarding their locations in
the complex domain. Cauchy added much to it, by giving more exact bounds for the moduli of the zeros
than those given by Gauss. In this concern, we prove some results concerning the bounds for the zeros of
a polynomial and some generalizations of an elegant result known as Enestrém-Kakeya theorem concerning
the location of zeros of polynomials with restriction on coefficients. The following result in the theory of
distribution of zeros of polynomials due to Cauchy [4] is well known:

n . .
Theorem 1 Let P(z) := Y a;jz’ be a polynomial of degree n. If M = maxo<j<n—1|2L|, then all the zeros
= n

of P(z) lie in
|z] <1+ M.

There exist several improvements and generalizations of this result. As an improvement Joyal, Labelle
and Rahman [6] proved the following:

n—1 .
Theorem 2 If B := maxo<j<n—1|a;|, then all the zeros of P(z) := 2"+ " a;z’ are contained in the circle
3=0

1

1 2
1 5 1+ lonsl + {0 = lanoal)? + 48]

Montel and Marty [7, p.138] on the other hand independently proved the following:

Theorem 3 All zeros of the polynomial P(z) = ag + a1z + -+ + an_12""1 + 2" lie in a circle |z| <
max (L,L%) , where L is the length of the polygonal line joining in succession the points 0, ag, ..., an—1, 1;
that is, L = |ao| + a1 — ag| + -+ |an—1 — apn—2| + |1 — an_1]-

*Mathematics Subject Classifications: (2010) 30A10, 30C10, 30C15.
fDepartment of Mathematics, Central University of Kashmir Ganderbal, Kashmir, India
fDepartment of Mathematics, Central University of Kashmir Ganderbal, Kashmir, India

192



S. L. Wali and M. Y. Mir 193

If we restrict the coefficients of the polynomial P(z) := 3 a;z? and assume that

v L=

p 2 Ap—1 2 "+ 2 a1

ag > 0.

Then according to a famous result in the theory of distribution of zeros of polynomials known as the Enestrém-
Kakeya theorem [7, p.136], all the zeros of P(z) lie in |z| < 1. Applying this result to the polynomial 2" P(1),
one gets an equivalent form of the Enestrom-Kakeya theorem, which states that:

n .
If P(z):= ) a;z’ is a polynomial of degree n such that
i=0
ap > ai 2 -+ ap-1 = ap > 0,

then P(z) has no zeros in |z| < 1.
Applying the above result to the polynomial P(tz), we have the following more general version of the
Enestrom-Kakeya theorem :

Theorem 4 Let P(z) := Y a;z7 be a polynomial of degree n such that for some t > 0,
j=0

t"an > t" ta,_1 > ... >tag > ag > 0.
Then all the zeros of P(z) lie in |z| <t and in case
aot > a1t" ' > can_1t >a, >0,
then P(z) has all zeros in |z| > +.

Recently by using Holder’s inequality, Aziz and Rather [3] proved the following result concerning the
distribution of zeros of polynomials.

Theorem 5 All zeros of the polynomial P(z) := Z ;20 of degree n lie in the circle

where p>1, ¢ >1 withp™t +q =1, and t > 0.

2 Lemmas
We first prove the following lemma.

Lemma 1 For any positive numbers t1 # 0 and ta, such that t; > to > 0, all zeros of the polynomial
n .

P(z):= )" a;27 of degree n lie in the circle
j=0

142 _ — J—
|z| <t max {NP,tl,tzprtl tQ},a1 =a_2=ans1 =0,

1 1)

where

|~

n+1
1 tltg(l' + (tl — tg)a'_l — A5;_2

N = (2] 3 |t

=0 nhl

p>0,¢g>0andp ' +¢g =1
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Proof. Consider the polynomial
F(z) = (i —2)(t2+2)P(2)
= t1t2a0 + (t1t2a1 + (tl — tg)ao)z + ...
+(t1taan + (t1 — ta)an—1 — an—2)2" + ((t1 — ta)an — an_1)z""" —an2"*?,

so that
n+1
t1t2a/ + (tl - tg)a i—1 — Q;_9
n+2 J J J
FEI a1 - > e
1 .
" 2 n 6% )\ '

This gives by inequality (1) using Holder’s inequality, for every p >0, ¢ >0, p~t + ¢! =1,

42 Npirty [CR [ty 71712 v
F(2)] > Janl 2"+ 1—”’“{ () } . @
(n+2)% jzz:o ||

1 n—j3+2
. = t t, -
Now if Ny 4, > 1, then max{Np,tth,Np,ﬁb} = Npit, 4, Also for |z| > ti, (ﬁ) < b=

0,1,2,...,n+ 1. Therefore if |z| > t1 N, 1, 1,, then from inequality (2) we have

n+1 gy L
N. t q
FG) > a2 1—{2() }
(n+2)7 U5 ||
t
= Jaulle™) [1—Np,t1,t2 (|;|)]>o. 3)

1 1 n—j+2
Again if N, 4, < 1, then maX{Np,tth,NpT:;Q,tQ} = N,;'/2,,. In this case if |z| < ¢;, then (lt—ll)

n+2 _1_
(%) ,7=0,1,2,...,n+ 1 and from inequality (2), we infer that if |z| > t; N*/?, , then

p,t1,t2)
N n+1 ¢ q(n+2) %
[F(2)] > anl|2"*?| 1—W{Z<1> }
(n+2)s Uiz \I2]

o tl n+2
|an||z" 7] |1 = Np.t 1, [ > 0. (4)

Combining (3) and (4), it follows that F(z) does not vanish for
1
|z| > t1 max {NP,tl,tz , Nl;;f-,tz }
From this, we conclude that all the zeros of F'(z) and hence P(z) lie in the disc defined by
1
|z| < t; max {Np’tl’w , Nl;;f,tz }

This completes the proof of the Lemma 1. m
Next lemma is a well known generalization of Schwarz’s lemma.
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Lemma 2 If P(z) is analytic in |z| <1, with |P(z)] < M on |z| =1, and p(0) = b, then

Mlz|+b

P(z)| < M2
P(2)] < bz + M

In the literature (see [2], [8], [10]) there exist several generalizations of Enestrom-Kakeya theorem. Given
a lower bound for the modulus of the zeros of a polynomial, what is a possible upper bound, needs an
attention as the study of such cases have recently been a concern due to their application in linear control
system, electrical networking, signal processing, coding theory and several other areas of physical sciences. In
this paper we first prove the following result where we find a region containing all the zeros of a polynomial
given a lower bound for the zeros of that polynomial.

Theorem 6 Let P(z) := Y ajz? be a polynomial of degree n which does not vanish in |z| < t, for some
§=0
t > 0. Then all the zeros of P(z) lie in

-1

<ni 72:

v p
taj — Qi1
3=0

At

tan — Gp-1
YR — L —

an

Proof. Consider the polynomial,
F(z) = (t = 2)P(2)
=(t—2)(an" +an 12"+ F a1z +a,)

—ap,2"t (tan, — an-1)z" -+ + (tar — ap)z + tao.

This gives
1

|2|"=7

tan taj —Qj—1

J=0

[F(2)] = lanllz"] | |2 =

an

If |2| > t, then by using Holder’s inequality, we have for p >0, ¢ >0 and p~! + ¢! =1,

n tan — Ap—-1 1 il tCL]‘ — Q51 P
[F(2)] > |an|l2"] ||z - ——"—|—ni{ > — >0,
an =l ant

if
n—1

RS
j=0

This shows that for |z| > ¢, F'(z) does not vanish in

C—a: 1|P
ta; —aj_1
anptn—7

=

n—1 P
ta, — Gp_1 1 ta; —a;_q
zZ— —-"| > na E Q
an ; a,t"—7
Jj=0

Hence, we conclude that those zeros of F(z) and therefore of P(z), whose modulus is greater than ¢ lie in

ta; —aj—1

5 tan, — an—1
t” J

(o
AP
=0

an

This completes proof of Theorem 6. ®
Theorem 6 and the second part of Theorem 4 together gives the following result.
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n .
Corollary 1 If P(z) := ) a;2’ is a polynomial of degree n such that for somet > 0,
§j=0

apt" > art" "t > > a, 1t > a, >0,

then all the zeros of P(z) lie in

Gy — tGp_1 t"ia; — "It P

i2p>

=0

tay,
From Theorem 6 and Corollary 1, the following results follow respectively by letting p — 1, and ¢ — oo

Corollary 2 Let P(z) := Y a;z7 be a polynomial of degree n which does not vanish in |z| < t, t > 0. Then
=0

J
all the zeros of P(z) lie in

ta, — Gp_1 taJ
gy nel

t” 7 5 a_1 = 0.

n—1
]0

’ﬂ

n .
Corollary 3 If P(z) := > a;27 is a polynomial of degree n such that for somet >0,
§=0

aot > art" ' > cap 1t > a, >0,

then all the zeros of P(z) lie in

n—1
—tan 1 t"a; —t"Ita;

j=0 @r

In particular if we take ¢t = 1, in Corollary 3 then we have:

3

Corollary 4 If P(z) := Y a;27 is a polynomial of degree n such that

afOZa'lZ"'zan—lza'n>Ov

then all the zeros of P(z) lie in

Qp — Gp_1 2a0 — Gp-1

z —

aTL aTL

Combining the Enestrom-Kakeya theorem and Corollary 4, we get the following interesting result:

Corollary 5 If P(z) := Y a;27 is a polynomial of degree n such that
3=0

ag > ap > - ap_1 > an > 0.
Then all the zeros of P(z) lie in the region

{z 1< 21

—ap—1

Z—

S 2a0—an_1}'
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3 Example

The following example shows that the bounds for the zeros of the polynomial obtained from our results are
comparatively better.
Consider the Polynomial

f(z) =27 4+32°+ 3125 +3.22 +3.22° + 3.322 + 3.42 + 3.4.

Its zeros are approximately:

—1.005059+059132¢, —1.005059—059132¢, —2.00427, —0.16765+1.067855¢, —0.16765—1.067855¢, 0.6748544+
0.78246641, 0.6748544 — 0.7824664.

The bounds for the zeros of the polynomial f(z) obtained by using the above results are given in the following
table :

S.No Theorems Bounds
1 Theorem 1 |z| < 4.4
2 Theorem 2 |z| <4.09
3 Enestrom Kakeya Theorem 2| <1
4 Theorem 5 with g — 0o, p— 1l and t =1 |z| < 5.7
5 Corollary 2 with t =1 |z 42| < 3.7
6 Corollary 5 {1 <|z|} n{|]z +2| <3.8}

From the table it is clear that the bounds for the zeros of P(z) obtained in Corollary 2 and Corollary 5
are comparatively better.

In the literature [1, 7-10] there exists some extensions and generalizations of the Enestrom-Kakeya theo-
rem. Egervary [5] (see also Aziz and Mohammed [2]) generalized the Enestrom-Kakeya theorem in a different
way and proved

ajz? be a polynomial of degree n with real positive coefficients. If t1 > ta > 0

Theorem 7 Let P(z) :=
j=0

n

j
can be found such that

artity + ar_1(t1 —t2) —ar_2 >0, 7=1,2,...,n+1, a1 =ay41 =0.
Then all the zeros of P(z) lie in |z| < t;.

Combining the techniques used in the proofs of Theorems 6 and 7, we next prove the following:

Theorem 8 Let P(z) := Y a;z? be a polynomial of degree n with real positive coefficients. If t; # 0 and
§=0
to can be found such that t1 > to > 0, then all the zeros of polynomial P(z) lie in

n+1 py L

1 t1toa; + (tl — tg)aj,1 — a2 }p

zl < (n4+2)a : . : ,
SEIERD> s

a_9=a_1=api1 =0, wherep>0, ¢q>0andp t+q =1

Proof. Consider the polynomial

F(2) (t1 — 2)(t2 + 2)P(2)
titaag + (titear + (t — ta)ag)z + (titeas + (t — ta)a; — ag)z® + ...

+(t1toan + (t1 — t2)an—1 — apn—2)z" + (t1 — tg)anz"+1 —ap2" 2.
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Applying Lemma 1 to the polynomial F(2), it follows that for every ¢; # 0 and ¢2 such that t; > to > 0, all
the zeros of F(z) lie in

n+2
2| <ty max {Np’tl,tzva t1,to }

where ) )
n+ py
1 titoa; + (t1 —ta)a—1 — a;_o P
Nptit, = (n+2)7 { E , st n— J)+27 : } :
=0 apty

Now by using Holder’s inequality, we have

(7 2an — t7 1 t0an) + -+ + (t3t2ar + tlag — titaag) + titaao|

1=
lant" 2|

<tlz
S(n+2)3{2

J=0

tthCL] t )CLJ 1~ Q52
n—j+2

ant

tltzaj + (tl — tg)aj_l — a2
anty It

p}},

=t1Npt, t,-

This means that max Np7t1,t2,Nn+2 } = N, 1, 1,- From this we conclude that the zeros of F'(z) and hence
all the zeros of P(z) lie in the circle
2] < (n+2) é{ Z
=0

D,t1,t2
p};
This completes the proof of Theorem 8. m
1
Letting ¢ — oo, so that p — 1 and noting that (n +2)« — 1, we get the following:

tltzaj tl — tg)aj_l —aj;—2
tn7j+1
1

Corollary 6 For any t1 # 0 and te, such that t; > to > 0, all the zeros of the polynomial P(z) of degree n,

lie in

tltgaj —+ (tl — tz)aj_l — a2
ant) !

) py1 =a_1=a_2=0.

Assuming titaa; + (t1 — t2)aj—1 — aj—2 > 0 and noting that

+1
nz tltgaj + (tl — tQ)aj,1 — G52
ant?_ﬁl

=0

n+1
= tn-‘rl Z {tQtJHaJ +tj+ aj-1 _t2t1ay 1= tlaj 2}

j=
] n+1 '
= tn+1 { tQGJ +a;- 1)75J1Jrl - Z(t2aj—1 + U:j_Q)t]l}
J=0 =0
n+2 n+1 ‘
tn+l { Z taaj 1 +a;— 2) Z(twg’ﬂ + ajz)tjl}
Jj=1 7=0
n+1 n+1 ‘
tn+1 {a"tn+2 + Z (t2aj—1 + a;— 2) 1 Z(twa’*l + aj?)t'{}

=1
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It follows that the result of Aziz and Mohammed ([2], Theorem 7) is a special case of Corollary 6

Similarly a result of Aziz and Rather [3, Corollary 3] follows from Corollary 6, if we take to = 0. Further the

result of Montel and Marty ([7],Theorem 3) is a special case of Corollary 6, if we take a, =1 =t; and t2 =0
By taking t; = t3 =t > 0 in Theorem 8, we have the following

Corollary 7 Let P(z) > a;27 be a polynomial of degree n. Then for somet > 0, all the zeros of P(z)
§=0
lie in

) n+1 p %
A<y S

§=0
In particular letting p — 1 and ¢ — oo in Corollary 7, it follows that all the zeros of P(z2) lie in

2
t Gj — Qj—2
antn_j+1

where p >0, ¢g>0andp ' +q 1t =1.

n+1
2] < Z

Next if we assume in Corollary 5 that t/a; — t/=2

a] 2
tn Jj+1

2 > 0, then we have the following

n
Corollary 8 If P(z) >~ a2’ is a polynomial of degree n such that for some t > 0, either
§=0
Ant"™ >y ot 2 > > agt® > a1t >0 and a, 1tV > ap st" > -
or

at"” > a

> ast? > ag >0 if n is odd
n,gt"72 > ...

> agt? > ag >0 and ap_1t"" > a

" >, gt" 3 > > ait >0 if nois even
then all the zeros of P(z) lie in the circle |z| <t
Proof. By assumption tia; — t/

20’]’72 > Oa ] = 071
ant"™ > ap_ot™”

.,n. This gives
2> .o >agt > ait > 0and a,_1t" 1 > a,_st" 3 > ast? > ag >0 if nis odd,
and
Apt™ > ap_ot™ 2> > ast? > a9 >0 and ap_1t""F > ap_gt" 3 > > a1t >0 if nis even
we have
n+1 t2a a n+1
j — Y%j-2] J. . 4i— 2

Z a tn—j-‘rl |a trL 1 Z ¢ a; ¢
=0 n j=0

n+1

1
_ 2 _ n __
= ot E <tﬂa] — - > = 7ant”*1ant =1t.
Hence by Corollary 7 with ¢ — oo and p — 1, it follows that all the zeros of P(z) liein |z] <t. m

2 lie
This in particular shows that Corollary 8 is an improvement over Theorem 4, as we only assume the
alternate coefficients to satisfy the given hypothesis. Very recently Rather et al
generalization of Enestrom-Kakeya Theorem

. [8] proved the following
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n .
Theorem 9 Let P(z) := > ajz’ be a polynomial of degree n with real coefficients such that for some
7=0
ki>1,j=1,2,...,r, where 1 <r <n,
klan > k2an71 > k3a'n72~-~ > kra'nfrJrl > Qp—p 2 ... 2 Q1 2> Qg

Then all the zeros of P(z) lie in

|an|

1 r
|Z +k—1-— (k‘g — l)an_l/an\ < — <k1an — (kQ — 1)|G,n_1| + 22(1(:] — 1)|an_j+1| —ag + ao).
Jj=2

For the study of further generalizations of Enestrom-Kakeya Theorem (see [9]). In the next result we
obtain a ring shaped region containing all the zeros of P(z). In this case we prove the result which generalizes
as well as improves the result of Joyal et al. [6].

n .
Theorem 10 Let P(z) = Y ajz’ be a polynomial of degree n with real coefficients, such that for some
3=0
ki >1,7=0,1,2,...;7, where 0 <r <n—1,
k()a'n > klan—l >z k'r—laf’n—r-i-l > kra’n—'r' > Qp—p—1.-- = G1 = GQ-

Then all the zeros of P(z) lie in the disk |z| < ro, where

b1 1 N E(l_i)erM
"7 2\an] M 4\ an| M lan] )

b= —(k‘o — 1)an + (koan — klan,l) + (l{il — 1)0,“,1

N | =

and

M = (ko — D)lan| + koan + 2> (kj = Dlan—_j| — an + |ac|.
j=1

Proof. Define a function
H(z)=(1-2)P(2)
= —a,2"T + (an —ap-1)2"+ ...+ (@p—r —ap—r—1)z2"""+ ... + (a1 —a2)z + ag
= —a,z" + {(kjoan —kian—1) — (ko — Da,, + (k1 — l)an_l}z”
+ {(klan,l —kocp—2) — (k1 — Dap—1 + (k2 — 1)an,2}z"_1 + ..
+ {(kr—10n—rs1 — kran_y) — (kr—1 — 1)an—rs1 + (kr — Dap_ p2" "
+ {(kran—r — an—r—1) = (kr = Dap—r 2"+ (@n—r-1 — Upp2)2" T L

+ (ag — a1)22 + (a1 — ag)z + ap.

Thus
H(2) = —apz"" +T(2), (5)
where
T(z) = {(koan — k1an—1) — (ko — 1)a, + (k1 — D)an_1 }2"

+ {(klan,l —kocp—2) — (k1 — Dap—1 + (k2 — 1)an,2}z"_1 +.

+ {(kr—1@n—rs1 — kran—r) — (kr—1 — Dan—ri1 + (ky — Dag_y }2" "1

+ {(kjran_T —ap—r-1)— (kr — 1)an_r}z"_r F (@np1 — Qppo)2" T+

+ (a9 — a1)22 + (a1 — ao)z + ap.
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Therefore,

G(z) = Z"T(l) =

Ly
+ {(k1an—1 — kacn—2) — (k1 — Dag—1 + (k2 — Dan—2}z + ...
+ {(kr—1an—rt1 — kran—) = (kr—1 — Dap—ri1 + (ky — Dag_, p2" 1
+ {(kran—r — an—r—1) — (kr = D)an—y }2" + (ap—r—1 — @n—y_2)z" 7" +
+ (ag — al)z"_2 + (a1 — ap)z" L4 apz™.
Clearly
G(0) = (koan — k1an—1) + (k1 — 1)an—1 — (ko — 1)a, = b (say).
Also for |z] =1,

G(2)] < (ko — Dlan| + koan +2Y _(k; — Dlan—j| — an + |ag| = M.

j=1
Therefore using Lemma 2 for G(z), we get
1 M + b|z|
G(2)| = 2"T(2) < M— 2=
G=)l = 2 (z)_ b+ M|z|
If |z| > 1, we get from (6)
M + b|z|
T < M|z|" ————.
7)) < My

Hence for |z| = R > 1, we get from (5)

[H(2)| = |an|R™ = |T(2)|

M + bz

> n+1 M n

= lanlR RS
R" ) 9

> 0.

R>b<1 1>+ b2<1 1>2+M
- —_— — _— — e — —_— :']"_
2\ Jan| M 4 \Jan] M |t | 0

That is all zeros of P(z) lie in a disk |z| < 9. This completely proves the theorem. m

If

N | =

M
Remark 1 We assume ﬁ > 1o, that is
an

1
Mo_b(1 1N (1 1\ M2
lan| = 2\ |an] M 4\ |an| M |an| '

2M? > b(M — |a,|) + <b2(M — lan|)? +4M3|an|> .

If

N | =

201
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This holds if (M — b)(M — |ay|) > 0. Since above inequality holds under the hypothesis of given theorem.

Thus ro < —, in particular taking all k; = 1,7 =0,1,2...7, we get

|anl

an — ap + |ao]

|z] <71 <
|an|

)

a refinement of the result of Joyal et al. ([6], Theorem 3).
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