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Abstract

In this analysis, we propose an advanced numerical technique, reproducing kernel discretization
method (RKDM), to investigate numerical solutions for a class of systems of fractional integro-differential
equations (SFIDE) with integral boundary conditions. The Atangana-Baleanu fractional derivative is
used to formulate the fractional integro-differential equations. The solution methodology is mainly based
on constructing a reproducing kernel function, that satisfies the integral boundary conditions, in order to
construct an orthonormal basis to formulate the solution in form of Fourier series that is uniformly conver-
gent in the specified space W 2

2 [a, b]. Numerical applications are investigated to represent the hypothesis
and to confirm the design steps of the proposed advanced technique. The numerical viewpoint indicates
that the RKDM is an important tool for dealing with such issues arising in physics and engineering fields.

1 Introduction

Fractional integro-differential equations are combinations of differential and integral differential equations
with arbitrary order. These equations often arise in the mathematical modeling of complex systems and
problems in many branches of engineering and applied mathematics such as fluid dynamics, electromagnetic,
electrodynamics, chemical kinetics, elasticity, biomechanics, biological models, and oscillation theory [1, 2, 3,
4, 5]. Nowadays, the fractional integro-differential equations with integral boundary conditions constitute a
very significant and important class of problems; that integral boundary condition came up when the values
of the required solution at boundary were connected to the values of interior points of the domain [6, 7, 8, 9].
The choice of the type of fractional derivative operator implemented during the mathematical formulation of
systems controls the determination of the eligibility and efficiency of the study embodied in these systems,
because it provides high-quality and excellent tools that contribute to decoding complex structures without
compromising the genetic properties of systems. There are many different kinds of fractional derivatives
operators. All of them include integral operators with different regularity properties and some have both
singular and non-singular kernels [10]. At any rate, among the more renowned definitions that are commonly
circulated in research papers, we mention Riemann-Liouville’s and Caputo’s fractional definitions. Despite
their frequent use as a result of their close association with the beginning of laying the foundations of
fractional calculus, these fractional operators suffer from some shortcomings, especially when it comes to
having singular kernels, which puts us a lot of question marks about knowing the behavior and history of
the phenomenon at that point.
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Recently, as part of the strenuous efforts made by researchers to update and improve the performance of
fractional operators in order to avoid the sterility that may fall into them, Atangana and Baleanu suggested
a novel fractional operator in the Caputo sense based primarily on the generalized Mittag-Leffler function
[11, 12]. This operator has the advantage of possessing a non-singular and non-local kernel, which enables
us to describe complex systems that follow at the same time the law of power and exponential decay in a
unique way and with great efficiency compared to other available fractional operators.

In this work, we consider the following system of fractional integro-differential equations

ABC
a D

αs
x us(x) = fs(x) +

2∑

l=1

∫ x

a

Hs,l(x, τ)ul(τ )dτ, s = 1, 2, (1)

with integral boundary conditions

us(a) + ηsus(b) + λs

∫ b

a

ps(τ )us(τ )dτ = 0 (2)

where ηs and λs, (s = 1, 2) are real constants; fs, ps, and Hs,k, (k = 1, 2, s = 1, 2) are continuous functions;
us, (s = 1.2) are the unknown functions to be determined. Here, ABC

a D
αs
x denotes the Atangana-Baleanu

fractional derivative of order αs such that αs ∈ [0, 1).

Due to the importance of these systems in various engineering and applied fields, as well as the difficulty
of finding closed solutions to them due to the inability of traditional methods to deal with the complexities
of non-linear formulation of systems, as well as the complexities of the implemented fractional operator. In
this work, we aim to employ an advanced numerical method based on reproducing kernel theory, in order to
explore the numerical and analytic solutions of this class of SFIDEs with integral boundary conditions. The
concept of reproducing kernels theory was first introduced by Zaremba in his research paper [13] to be followed
by more related papers that established the birth of an advanced and integrated iterative method. The
reproducing kernel theory has played significant role in many successful applications in numerical analysis,
differential equation, fuzzy differential equations, difference equations, probability and statistics and so on,
see [14]–[31] and [33].

This paper is arranged as follows: In section 2, some elementary definitions and concepts of the fractional
operator used are presented. In section 3, the reproducing kernel Hilbert space associated with SFIDE (1)
is investigated. In section 4, our fundamental results are presented. In section 5, some test examples and
computational results are obtained. Finally, some concluding remarks are presented in the end.

2 The Atangana-Baleanu Fractional Derivative

In this section, we introduce the elementary definitions of the novel fractional derivatives proposed by
Atangana and Baleanu [11].

Definition 1 The Mittag-Leffler function Eα(x) is defined as

Eα(x) =

∞∑

k=0

xk

Γ(αk + 1)
, α > 0.

This function provides the simplest nontrivial generalization of the exponential function in which the
factor k! = Γ(k + 1) is replaced by (αk)! = Γ(αk + 1).

Definition 2 The Sobolev space H1[a, b] is defined as follow:

H1[a, b] = {v | v(j) is Abs. Cont., j = 1, 2, . . . , m− 1, v(m) ∈ L2([a, b])}.
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Definition 3 The Atangana-Baleanu fractional derivative in Caputo sense is presented as

ABC
a D

α
xu(x) =

B(α)

1 − α

∫ x

a

u′(τ )Eα

(
−

α

1 − α
(x − τ )α

)
dτ, (3)

for 0 ≤ α ≤ 1, a ≤ x ≤ b, and u(x) ∈ H1[a, b].

Definition 4 The Atangana-Baleanu fractional derivative in Riemann-Liouville sense is presented as

ABR
a D

α
xu(x) =

B(α)

1 − α

d

dx

∫ x

a

u(τ )Eα

(
−

α

1 − α
(x − τ )α

)
dτ, (4)

for 0 ≤ α ≤ 1, a ≤ x ≤ b, and u(x) ∈ H1[a, b] which may not be differentiable.

In the above definitions, B(α) is the normalization function which depends on α and satisfies B(α) =
1 − α + α

Γ(α) such that B(0) = B(1) = 1.

Definition 5 The fractional integral associated to the Atangana-Baleanu fractional derivative is defined as

AB
a I

α
xu(x) =

1 − α

B(α)
u(x) +

α

B(α)Γ(α)

∫ x

a

u(τ )(x − τ )α−1dτ. (5)

3 Reproducing Kernel Hilbert Space

In this section, we construct the reproducing kernel Hilbert space associated with SFIDE (1)–(2).

Definition 6 Suppose that (H, ‖ · ‖H) is a Hilbert space of real functions defined on an abstract set Ω. A
function K : Ω × Ω −→ R that satisfies the following two conditions

(a) Kx(·) = K(·, x) ∈ H, ∀x ∈ Ω;

(b) 〈f(·), K(·, x)〉H = f(x), ∀x ∈ Ω and ∀f ∈ H,

is called a reproducing kernel function for H.

The last condition is knows as ”the reproducing property”, which reproduces the value of the function
f(·) at the point x by the inner product of f(·) with Kx(·).

We will indicate to such Hilbert space H that has a reproducing kernel function as a reproducing kernel
Hilbert space.

Now, in a way similar to what Geng and Cui did in [14], we construct the reproducing kernel Hilbert
space W 2

2 [a, b].

Definition 7 The space W 2
2 [a, b] is defined as follows:

W 2
2 [a, b] =

{
u(x) : u, u′ are univariate absolutely continuous real-valued functions,

u(2) ∈ L2[a, b], u(a) + ηu(b) + λ

∫ b

a

p(τ )u(τ )dτ = 0
}

.

The inner product and norm associated with W 2
2 [a, b] are given, respectively, by

〈u(x), v(x)〉W2

2
=

1∑

i=0

u(i)(a)v(i)(a) +

∫ b

a

u(2)(x)v(2)(x)dx, (6)

and ‖u‖2
W2

2

= 〈u(x), u(x)〉W2

2
, where u, v ∈ W 2

2 [a, b].
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Theorem 1 The space W 2
2 [a, b] is a complete reproducing kernel Hilbert space and the unique representation

of reproducing kernel function Kx(τ ) of W 2
2 [a, b] can be obtained as follows:

Kx(τ ) =






∑4
k=1 ak(x)τk−1 − cH(y), τ < x,

∑4
k=1 bk(x)τk−1 − cH(y), x ≤ τ,

(7)

where H(y) =
∫ τ

a

∫ τ4

a

∫ τ3

a

∫ τ2

a
h(τ1) dτ1 dτ2 dτ3 dτ4.

Proof. From Eq. (6), we have

〈u(τ ), Kx(τ )〉W2

2
=

1∑

i=0

u(i)(a)K(i)
x (a) +

∫ b

a

u(2)(τ )K(2)
x (τ )dx

+c

[
u(a) + ηu(b) + λ

∫ b

a

p(τ )u(τ )dτ

]
. (8)

By successive integration by parts for Eq. (8), it becomes

〈u(τ ), Kx(τ )〉W2

2
= u(a)

[
Kx(a) + K(3)

x (a) + c
]

+ u′(a)
[
K(1)

x (a) − K(2)
x (a)

]

−u(b)
[
K(3)

x (b) + cη
]

+ u′(b)K(2)
x (b) +

∫ b

a

u(τ )
[
K(4)

x (τ ) − ch(τ )
]
dτ. (9)

Since Kx(τ ) ∈ W 2
2 [a, b], Kx(τ ) satisfies

Kx(a) + ηKx(b) + λ

∫ b

a

p(τ )Kx(τ )dτ = 0. (10)

If
Kx(a) + K(3)

x (a) + c = 0, K(1)
x (a) − K(2)

x (a) = 0, (11)

K(3)
x (b) + cη = 0 and K(2)

x (b) = 0, (12)

then

〈u(τ ), Kx(τ )〉W2

2
=

∫ b

a

u(τ )
[
K(4)

x (τ ) − ch(τ )
]
dτ. (13)

Now, with the aid of reproducing kernel property, we can get

K(4)
x (τ ) − ch(τ ) = δ(τ − x). (14)

The corresponding characteristic equation of Eq. (14) is given by

r4 = 0. (15)

Consequently, we can obtain characteristic values r = 0 whose multiplicity is 4. Then, let

Kx(τ ) =






∑4
k=1 ak(x)τk−1 − cH(y), τ < x,

∑4
k=1 bk(x)τk−1 − cH(y), x ≤ τ,

where, H(y) =
∫ τ

a

∫ z

a

∫ t

a

∫ s

a
h(r) dr ds dt dz.

On the other hand, the unknown coefficients ak(x) and bk(x) are determined by

K(k)
x (x + 0) = K(k)

x (x − 0), k = 1, 2, 3. (16)
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Also,

K(4)
x (x + 0) − K(4)

x (x − 0) = 1. (17)

From (10)–(12), (16), and (17), the unknown coefficients of Eq. (7) can be determined.

In [14], Li and Cui determine the reproducing kernel Hilbert space W 1
2 [a, b] as follows:

W 1
2 [a, b] = {u(x) : u is one variable absolutely continuous real-valued function, u′ ∈ L2[a, b]}.

The inner product and norm associated with W 1
2 [a, b] are given, respectively, by

〈u(x), v(x)〉W1

2
=

∫ b

a

(u(x)v(x) + u′(x)v′(x)) dx, (18)

and ‖u‖2
W1

2

= 〈u(x), u(x)〉W1

2
, where u, v ∈ W 1

2 [a, b].

Also, its reproducing kernel function as follows:

K̄x(τ ) =
1

sinh(1)
[cosh(x + τ − 1) + cosh(|x− τ | − 1)] .

4 Description of the Method

In this section, we explain the practical steps of the RKDM proposed for solving the system (1)–(2). We
first define a linear differential operator as follows

Ls : W 2
2 [a, b] −→ W 1

2 [a, b], a ≤ x ≤ b, (19)

such that

Lsu(x) =ABR
a D

αs
x us(x); s = 1, 2.

Then the system (1)–(2) can be converted into

Lsu(x) = fs(x) +

2∑

l=1

∫ x

a

Hs,l(x, τ)ul(τ )dτ, s = 1, 2, (20)

with integral boundary conditions

us(a) + ηsus(b) + λs

∫ b

a

ps(τ )us(τ )dτ = 0. (21)

Here, it is clear that Ls : W 2
2 [a, b] −→ W 1

2 [a, b]; s = 1, 2 is a linear and bounded operator. In the following we
construct an orthogonal function system of W 2

2 [a, b] as follows: Choose a countable dense subset {x}∞i=0 in

[a, b], put Φ
{s}
i (x) = K̄xi

(x) and Ψ
{s}
i (x) = L?

sΦ
{s}
i (x), where L?

s is the conjugate operator of L and s = 1, 2.

The orthonormal function systems {Ψ̂
{s}
i (x)}∞i=0 of W 2

2 [a, b] can be constructed by applying Gram-Schmidt

orthogonalization process of {Ψ
{s}
i (x)}∞i=0 as follows:

Ψ̂
{s}
i (x) =

i∑

k=1

γ
{s}
ik Ψ

{s}
i (x); i = 1, 2, . . . , s = 1, 2,
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where, γ
{s}
ik are the orthogonalization coefficients such that γ

{s}
ii > 0, and are obtained using the following

algorithm:

Theorem 2 If {xi}
∞
i=1 is a dense subset on [a, b], then {Ψ

{s}
i (x)}∞i=1 is a complete function system in

W 2
2 [a, b] with Ψ

{s}
i (x) = (Ls)τKx(τ ) |τ=xi

such that (Ls)τ indicates that the operator Ls, s = 1, 2 is applied
to the function of τ .

Proof. Note here that

Ψ
{s}
i (x) = L?

sΦ
{s}
i (τ ) = 〈L?

sΦ
{s}
i (τ ), Kx(τ )〉W2

2

= 〈Φ
{s}
i (τ ), LsKx(τ )〉W1

2
= (Ls)τKx(τ ) |τ=xi

.

Now, look at the completeness of the sequence {Ψ
{s}
i (x)}∞i=1 in W 2

2 [a, b]. For each fixed us(x) ∈ W 2
2 [a, b], let

〈us(x), Ψ
{s}
i (x)〉W2

2
= 0, i = 1, 2, . . . , so that

〈us(x), Ψ
{s}
i (x)〉W2

2
= 〈us(x), L?

sΦ
{s}
i (x)〉W2

2
= 〈Lsus(x), Φ

{s}
i (x)〉W2

2
= Lsus(xi) = 0.

Since {xi}
∞
i=1 is a dense subset on [a, b] and L−1

s exist, we obtain us(x) = 0 for s = 1, 2.

Now, we give the representation expression of analytical and approximate solutions of system (20)–(21).

Theorem 3 If {xi}
∞
i=1 is a dense subset on [a, b] and the solution of SFIDE (20)–(21) is unique and L−1

s

exists then a formula of the solution can be expressed as follows:

us(x) =

∞∑

i=1

A
{s}
i Ψ̂

{s}
i (x), (22)

where, A
{s}
i =

∑i
k=1 γ

{s}
ik

(
fs(xk) +

∑2
l=1

∫ xk

a
Hs,l(xk, τ )ul(τ )dτ

)
such that γ

{s}
ik are the orthogonalization

coefficients and s = 1, 2.

Proof. Using the previous theorem, it is easy to show that {Ψ̂
{s}
i (x)}∞i=1 is the complete orthonormal basis

of W 2
2 [a, b]. Note that, 〈us(x), Φ

{s}
i (x)〉W1

2
, for each us(x) ∈ W 1

2 [a, b]. Hence, we have

us(x) =

∞∑

i=1

〈us(x), Ψ̂
{s}
i (x)〉W2

2
Ψ̂

{s}
i (x)

=

∞∑

i=1

i∑

k=1

γ
{s}
ik 〈us(x), Ψ

{s}
i (x)〉W2

2
Ψ̂

{s}
i (x)
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=

∞∑

i=1

i∑

k=1

γ
{s}
ik 〈us(x), L?Φ

{s}
k (x)〉W2

2
Ψ̂

{s}
i (x)

=

∞∑

i=1

i∑

k=1

γ
{s}
ik 〈Lsus(x), Φ

{s}
k (x)〉W1

2
Ψ̂

{s}
i (x)

=

∞∑

i=1

i∑

k=1

γ
{s}
ik

(
fs(xk) +

2∑

l=1

∫ xk

a

Hs,l(xk, τ )ul(τ )dτ

)
Ψ̂

{s}
i (x)

=

∞∑

i=1

A
{s}
i Ψ̂

{s}
i (x).

The approximate solution us,n(x) can be obtained by taking finitely many terms in the series represen-
tation of us(x) and

us,n(x) =
n∑

i=1

A
{s}
i Ψ̂

{s}
i (x). (23)

Lemma 1 If us(x) ∈ W 2
2 [a, b], then there exists positive real number cs such that

|u(i)
s (x)| ≤ cs‖u(x)‖W2

2
, i = 0, 1, and s = 1, 2.

Theorem 4 Suppose that us(x) is the unique solution of SFIDE (1)–(2) and εs,n is the error between the
exact us(x) and the approximate us,n(x) for s = 1, 2. Then, the norm ‖ · ‖W2

2
of the error εs,n is monotone

decreasing.

Proof. From the formula (22) and (23), it yields that

‖εs,n‖
2
W2

2

=

(
∞∑

i=n+1

i∑

k=1

γ
{s}
ik

(
fs(xk) +

2∑

l=1

∫ xk

a

Hs,l(xk, τ )ul(τ )dτ

)
Ψ̂

{s}
i (x)

)

=

∞∑

i=n+1

(
i∑

k=1

γ
{s}
ik

(
fs(xk) +

2∑

l=1

∫ xk

a

Hs,l(xk, τ )ul(τ )dτ

))2

. (24)

The above formula shows that the square norm of the error εs,n is monotone decreasing, and the proof is
complete.

5 Computation experiments

In this section, we consider some meaningful numerical examples in order to illustrate the efficiency and
reliability of the proposed method for solving the SFIDE (1)–(2). All symbolic and numerical results were
performed by using the MATHEMATICA 12 software package.

Example 1 Consider the following SFIDE





ABC
0 D

α
xu1(x) =

∫ x

0
(x − τ )(u1(τ ) + u2(τ )) dτ − sin(x) + cos(x) − 2,

ABC
0 D

α
xu2(x) =

∫ x

0
(x − τ )(u1(τ ) − u2(τ )) dτ − sin(x) − 2(sin(x) − x) + cos(x),

subject to the integral boundary conditions:





u1(0) + 1
2 sin(1)−1

u1(1) −
∫ 1

0
1

2 sin(1)−1
u1(x)dx = 0,

u2(0) + 1
1−2 cos(1)u2(1) −

∫ 1

0
1

1−2 cos(1)u2(x)dx = 0,
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where, 0 ≤ α ≤ 1. The exact solution at α = 1 is
{

u1(x) = cos(x) − sin(x),

u2(x) = cos(x) + sin(x).

Indeed, the exact solution at the fractional value of α is not available.
By applying the proposed method to solve Example (1). We display the numerically representative results

in Tables 1–4. Error analysis at some selected grid points with step size h = 0.16 and n = 51 when α = 1
are summarized in Tables 1 and 2. Furthermore, using the present method, we pick uniform grid points
xk = k−1

n−1 , i = 1, 2, . . . , n. The numerical outcomes for different values of the fractional-order α are given in
Tables 3 and 4 to explain the approximate solutions such that α ∈ {0.75, 0.85, 0.95, 1} and n = 21.

Table 1: Numerical outcomes for the solution u1(x) of Example (1) at α = 1.

xk u1(xk) u1,51(xk) |u1(xk) − u1,51(xk)|
˛

˛

˛

u1(xk)−u1,51(xk)

u1(xk)

˛

˛

˛

0.16 0.827909 0.827916 7.0817×10−6 8.55372×10−6

0.32 0.634669 0.634680 1.1569×10−5 1.82297×10−5

0.48 0.425216 0.425229 1.3612×10−5 3.20122×10−5

0.64 0.204900 0.204912 1.1476×10−5 5.60098×10−5

0.80 -0.0206494 -0.020645 3.4331×10−6 1.66259×10−4

0.96 -0.2456720 -0.245684 1.2223×10−5 4.97537×10−5

Table 2: Numerical outcomes for the solution u2(x) of Example (1) at α = 1.

xk u2(xk) u2,51(xk) |u2(xk) − u2,51(xk)|
˛

˛

˛

u2(xk)−u2,51(xk)

u2(xk)

˛

˛

˛

0.16 1.14655 1.14616 3.83251×10−4 3.34266×10−4

0.32 1.26380 1.26342 3.85271×10−4 3.04851×10−4

0.48 1.34877 1.34839 3.83138×10−4 2.84064×10−4

0.64 1.39929 1.39892 3.75127×10−4 2.68084×10−4

0.80 1.41406 1.41370 3.59590×10−4 2.54296×10−4

0.96 1.39271 1.39238 3.35005×10−4 2.40542×10−4

Example 2 Consider the following SFIDEs





ABC
0 D

α
xu1(x) = 1

Γ(α)

∫ x

0
(x − τ )α−1u2(τ )dτ + 5

4
(1 + x),

ABC
0 D

α
xu2(x) = 1

Γ(α)

∫ x

0 (x − τ )α−1u1(τ )dτ + 7
4(1 + x),

with the nonlocal boundary conditions:




u1(0) + 2

5
u1(1) − sin(1.352)

∫ 1

0
u1(x)dx = 0,

u2(0) + 2
3u2(1) − tan(1.004)

∫ 1

0
u2(x)dx = 0,

Table 3: Numerical outcomes for the approximate solution u1.21(x) at different values of α for Example (1).
xk α=1 α=0.95 α=0.85 α=0.75
0.1 0.895216 0.763427 0.862165 0.663817
0.2 0.781462 0.653123 0.749839 0.555434
0.3 0.659898 0.538629 0.630672 0.445503
0.4 0.531736 0.420308 0.505833 0.333497
0.5 0.398256 0.299119 0.376522 0.220117
0.6 0.260788 0.176139 0.243991 0.106245
0.7 0.120703 0.052457 0.109522 -0.00723
0.8 -0.020601 -0.070842 -0.025587 -0.11945
0.9 -0.161717 -0.192690 -0.160039 -0.22958
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Table 4: Numerical outcomes for the approximate solution u2,21(x) at different values of α for Example (1).
xk α=1 α=0.95 α=0.85 α=0.75
0.1 1.092630 1.197960 1.118240 1.278340
0.2 1.176520 1.252500 1.192200 1.313070
0.3 1.248630 1.294380 1.254450 1.333880
0.4 1.308260 1.323770 1.304340 1.341890
0.5 1.354800 1.340410 1.341360 1.337150
0.6 1.387790 1.344070 1.365120 1.319720
0.7 1.406920 1.334710 1.375400 1.289760
0.8 1.411980 1.312410 1.372110 1.247660
0.9 1.402940 1.277460 1.355290 1.193920

Table 5: Numerical outcomes for the solution u1(x) of Example (2) at α = 1.

xk u1(xk) u1,51(xk) |u1(xk) − u1,51(xk)|
˛

˛

˛

u1(xk)−u1,51(xk)

u1(xk)

˛

˛

˛

0.16 0.217244 0.217246 2.63589×10−6 1.21334×10−5

0.32 0.474359 0.474372 1.35885×10−5 2.86460×10−5

0.48 0.780416 0.780442 2.66698×10−5 3.41738×10−5

0.64 1.145950 1.145990 4.23195×10−5 3.69298×10−5

0.80 1.583150 1.583210 6.10411×10−5 3.85568×10−5

0.96 2.106130 2.106210 8.34128×10−5 3.96048×10−5

where 0 ≤ α ≤ 1. The exact solution at α = 1 is





u1(x) = −(0.75 + 1) +

3 exp(x)
2 − 1

2(1 − 20.75)(cos(x) − sin(x)),

u2(x) = (0.75 − 2) + 3 exp(x)
2

+ 1
2
(1 − 20.75)(cos(x) − sin(x)).

Indeed, the exact solution at the fractional value of α is not available.
By applying the proposed method to solve Example (2). We display the numerically representative results

in Tables 5–8. Error analysis at some selected grid points with step size h = 0.16 and n = 51 when α = 1
are summarized in Tables 1 and 2. Furthermore, using the present method, we pick uniform grid points
xk = k−1

n−1 , i = 1, 2, . . . , n. The numerical outcomes for different values of the fractional-order α are given in
Tables 3 and 4 to explain the approximate solutions such that α ∈ {0.75, 0.85, 0.95, 1} and n = 11. Also, in
Figures 1 and 2, we represent the numerical data graphically in the form of graphic curves in order to study
the behavior of approximate solutions at different values for α and study the error analysis compared with
the exact solution at α = 1.

Here, it is obvious that numerical solutions are in close coincidence with each other.

6 Conclusion

In this work, we apply a flexible and precise iterative numerical approach, reproducing kernel discretization
method (RKDM), in order to explore solutions of SFIDEs subject to the integral boundary conditions

Table 6: Numerical outcomes for the solution u2(x) of Example (2) at α = 1.

xk u2(xk) u2,51(xk) |u2(xk) − u2,51(xk)|
˛

˛

˛

u2(xk)−u2,51(xk)

u2(xk)

˛

˛

˛

0.16 0.30328 0.30329 1.87581×10−6 6.18492×10−6

0.32 0.65702 0.65703 9.81961×10−6 1.49456×10−5

0.48 1.06781 1.06783 1.96850×10−5 1.84350×10−5

0.64 1.54350 1.54353 3.20966×10−5 2.07947×10−5

0.80 2.09347 2.09352 4.77527×10−5 2.28103×10−5

0.96 2.72896 2.72903 6.74244×10−5 2.47070×10−5
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(a) (b)

Figure 1: Comparison of the exact solution and the approximate solutions (with n = 51) for Example (2)
with α = 1.

(a) (b)

Figure 2: The behavior of approximate solutions at different values of Example (2) for n = 11 at different
values of α: ”Black” α = 1,”Blue” α = 0.95,”Red” α = 0.85, and ”Green” α = 0.75.
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Table 7: Numerical outcomes for the approximate solution u1,11(x) at different values of α for Example (2).
xk α=1 α=0.95 α=0.85 α=0.75
0.1 0.131264 0.284930 0.157123 0.420116
0.2 0.277012 0.441727 0.305443 0.605207
0.3 0.439425 0.619162 0.470347 0.800601
0.4 0.620469 0.818675 0.654918 1.028600
0.5 0.822598 1.043230 0.861889 1.284820
0.6 1.048500 1.295180 1.093940 1.574880
0.7 1.301120 1.576950 1.354070 1.901450
0.8 1.583690 1.891440 1.645740 2.268900
0.9 1.899730 2.240780 1.971940 2.680540

Table 8: Numerical outcomes for the approximate solution u2,11(x) at different values of α for Example (2).
xk α=1 α=0.95 α=0.85 α=0.75
0.1 0.183760 0.398323 0.220059 0.586464
0.2 0.386437 0.590778 0.424416 0.805510
0.3 0.609601 0.810051 0.648416 1.053710
0.4 0.854689 1.040980 0.894579 1.326370
0.5 1.123510 1.290500 1.165180 1.630350
0.6 1.418100 1.557010 1.462230 1.966760
0.7 1.740700 1.841510 1.788120 2.339430
0.8 2.093850 2.144510 2.145660 2.752070
0.9 2.480380 2.466290 2.537270 3.207920

emerging in the framework of Atangana-Baleanu fractional concepts. This approach is mainly based on
the reproducing kernel theory which has widely used applications. The obtained results show the accuracy
and effectiveness of the RKDM on dealing with such types of systems emerging in the Atangana-Baleanu
frameworks.
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