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Abstract

The aim of this work is to point out that the class of free boundary problems governed by second

order autonomous ordinary differential equations can be transformed to initial value problems. Interest

in the numerical solution of free boundary problems arises because these are always nonlinear problems.

The theoretical content of this paper is original: results already available in literature are related to the

invariance properties of scaling or spiral groups of point transformations but here we show how it is also

possible to use invariance properties of a translation group. We test the proposed algorithm by solving

three problems: a problem describing a rope configuration against an obstacle, a dynamical problem

with a nonlinear force, and a problem related to the optimal length estimate for tubular flow reactors.

1 Introduction

Free boundary value problems (BVPs) occur in all branches of applied mathematics and science. The oldest
problem of this type was formulated by Isaac Newton, in book II of his great “Principia Mathematica” of
1687, by considering the optimal nose-cone shape for the motion of a projectile subject to air resistance, see
Edwards [13] or Fazio [25].

In the classical numerical treatment of a free BVP a preliminary reduction to a BVP is introduced by
considering a new independent variable; see, Stoer and Bulirsch [43, p. 468], Ascher and Russell [5], or
Ascher, Mattheij and Russell [4, p. 471]. By rewriting a free BVP as a BVP it becomes evident that the
former is always a nonlinear problem; the first to point out the nonlinearity of free BVPs was Landau [31].
Therefore, in that way free BVPs are BVPs. In this paper we show that free BVPs invariant with respect to
a translation group can be solved non-iteratively by solving a related initial value problem (IVP). Therefore
in this way those free BVPs are indeed IVPs. Moreover, we are able to characterize a class of free BVPs
that can be solved non-iteratively by solving related IVPs.

The non-iterative numerical solution of BVPs is a subject of past and current research. Several different
strategies are available in literature for the non-iterative solution of BVPs: superposition [4, pp. 135–145],
chasing [37, pp. 30–51], and adjoint operators method [37, pp. 52–69] that can be applied only to linear
models; parameter differentiation [37, pp. 233–288] and invariant imbedding [32] can be applied also to
nonlinear problems. In this context transformation methods (TMs) are founded on group invariance theory,
see Bluman and Cole [8], Dresner [12], or Bluman and Kumei [9]. These methods are initial value methods
because they achieve the numerical solution of BVPs through the solution of related IVPs.

The first application of a non-iterative TM was given by Töpfer in [44] for the Blasius problem, without
any consideration of group invariance theory. Töpfer’s algorithm is quoted in several books on fluid dynamics,
see, for instance, Goldstein [28, pp. 135–136]. Acrivos, Shah and Petersen [1] first and Klamkin [29] later
extended Töpfer’s method respectively to a more general problem and to a class of problems. Along the
lines of the work of Klamkin, for a given problem Na [34, 35] showed the relation between the invariance
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properties, with respect to a linear group of transformation (the scaling group), and the applicability of a
non-iterative TM. Na and Tang [38] proposed a non-iterative TM based on the spiral group and applied it to
a non-linear heat generation model. Belford [6] first, and Ames and Adams [2, 3] later defined non-iterative
TMs for eigenvalue problems. A review paper was written by Klamkin [30]. Extensions of non-iterative TM,
by requiring the invariance of one and of two or more physical parameters when they are involved in the
mathematical model, were respectively proposed by Na [36] and by Scott, Rinschler and Na [41]; see also
Na [37, Chapters 8 and 9]. A survey book, written by Na [37, Chs 7-9] on the numerical solution of BVP,
devoted three chapters to numerical TMs.

As far as free BVPs are concerned, non-iterative and iterative TMs were proposed by Fazio and Evans
[26]. Fazio [14] has shown that we can extend the applicability of non-iterative TMs by rewriting a given
free BVP using a variables transformation obtained by linking two different invariant groups.

However, non-iterative TMs are applicable only to particular classes of BVPs so that they have been
considered as ad hoc methods, see Meyer [32, pp. 35–36], Na [37, p. 137] or Sachdev [40, p. 218].

The transformation of BVPs to IVPs has also a theoretical relevance. In fact, existence and uniqueness
results can be obtained as a consequence of the invariance properties. For instance, for the Blasius problem,
a simple existence and uniqueness theorem was given by J. Serrin as reported by Meyer [33, pp. 104–105]
Moreover, using scaling invariance properties the error analysis of the truncated boundary formulation of the
Blasius problem was developed by Rubel [39]. On this topic a first application of a numerical test, defined
within group invariance theory, to verify the existence and uniqueness of the solution of a free BVPs was
considered by Fazio in [16]. A formal definition of the mentioned numerical test can be found in [20].

In this paper we consider the class of free BVPs governed by second order autonomous differential
equations, and define, for these problems, a non-iterative TM using the invariance properties of a translation
group. As far as applications of the proposed algorithm are concerned, we solve three problems. First we
test our method with a problem describing a rope configuration against an obstacle, where we compare the
obtained numerical results with the exact solution. Then we solve a dynamical problem with a nonlinear
force, and a problem related to the optimal length estimate for tubular flow reactors, where in both cases
our results are compared to numerical data available in literature. Finally, the last section is concerned with
concluding remarks pointing out limitations and possible extensions of the proposed approach.

1.1 The Non-Iterative TM

Let us consider the class of second order free BVPs given by

d2u

dx2
= Ω

(

u,
du

dx

)

, x ∈ (0, s), (1)

A1u(0) + A2

du

dx
(0) = A3, (2)

u(s) = B,
du

dx
(s) = C, (3)

where Ai, for i = 1, 2, 3, B and C are arbitrary constants, and s > 0 is an unknown free boundary. The
differential equation (1) and the two free boundary conditions (3) are invariant with respect to the translation
group

x∗ = x + µ ; s∗ = s + µ ; u∗ = u .

By using this invariance, we can define the following non-iterative algorithm for the numerical solution of
(1)–(3):

• we fix freely a value of s∗;

• we integrate backwards from s∗ to x∗

0
the following auxiliary IVP







d2u∗

dx∗2 = Ω
(

u∗, du∗

dx∗

)

,

u∗(s∗) = B, du∗

dx∗ (s∗) = C ,
(4)
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using an event locator in order to find x∗

0
such that

A1u
∗(x∗

0
) + A2

du∗

dx∗

(x∗

0
) = A3 ; (5)

• finally, through the invariance property, we can deduce the similarity parameter

µ = x∗

0
, (6)

from which we get the unknown free boundary

s = s∗ − µ. (7)

The missing initial conditions are given by

u(0) = u∗(x∗

0
),

du

dx
(0) =

du∗

dx∗
(x∗

0
). (8)

Let us define now a simple event locator suited to the class of problems (1)–(3). We consider first the
case where

A1u
∗(s∗) + A2

du∗

dx∗

(s∗) < A3. (9)

We can integrate the auxiliary IVP (4) with a constant step size ∆x∗ until at a given mesh point x∗

k we get

A1u
∗(x∗

k) + A2

du∗

dx∗

(x∗

k) > A3, (10)

and repeat the last step with the smaller step size

∆x∗

0
= ∆x∗

A3 − A1u
∗(x∗

k−1
) − A2

du∗

dx∗ (x∗

k−1
)

A1u∗(x∗

k) + A2
du∗

dx∗
(x∗

k) − A1u∗(x∗

k−1
) − A2

du∗

dx∗
(x∗

k−1
)
. (11)

In defining the last step size in equation (11) we use a linear interpolation. As a consequence, we have that
x∗

0
≈ x∗

k−∆x∗

0
. We notice that the condition imposed by this event locator converges to the correct condition

(5) as the step size goes to zero, cf. the second column of table 2.
The other case

A1u
∗(s∗) + A2

du∗

dx∗
(s∗) > A3, (12)

can be treated in a similar way. Of course, also in this second case the last step size is smaller than the
previous ones.

In the next section we apply the proposed non-iterative TM to three problems. The reported numerical
results were computed by the classical fourth-order Runge-Kutta’s method, reported by Butcher [10, p. 166],
coupled with the event locator defined above.

2 The Oobstacle Problem on a String

For the obstacle problem on a string, depicted on figure 1 within the (x, u)-plane where the x axis is taken
overlying to the obstacle, we have to consider the following mathematical model, see Collatz [11] or Glashoff
and Werner, [27]







d2u
dx2 = θ

[

1 +
(

du
dx

)2
]1/2

, x ∈ (0, s),

u(0) = u0, u(s) = du
dx (s) = 0,

(13)

where the positive value of θ depends on the string properties. In this problem we have to find the position
of a uniform string of finite length L under the action of gravity. The string has fixed end points, say (0, u0)
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and (b, 0), where u0 > 0 and b > 0. Furthermore, we assume that the condition L2 >
(

u2

0
+ b2

)

is fulfilled;
this condition allows us to define a free boundary s for this problem, where s is the detached rope position
from the obstacle.

The free BVP (13) was solved by the first author in [15] by iterative methods, namely a shooting method
and the iterative extension of the TM derived by using the invariance with respect to a scaling group.

The exact solution of the free BVP (13) is given by







u(x) = θ−1 [cosh (θ (x − s)) − 1] ,

s = θ−1 ln

[

θu0 + 1 +
(

(θu0 + 1)
2
− 1

)1/2
]

,
(14)

from this we easily find
du

dx
(0) = sinh(−θs) =

1

2

(

e−θs − eθs
)

, (15)

and, therefore, for θ = 0.1 and u0 = 1 from equations (14)–(15) we get the values

s = 4.356825433 ,
du

dx
(0) = −0.458257569, (16)

that are correct to the ninth decimals.

Table 1: Convergence of numerical results for θ = 0.1.

∆x du
dx (0) er s er

−0.1 −0.458227362 6.59D− 05 4.435407932 6.19D− 05

−0.05 −0.458250809 1.47D− 05 4.435621088 1.39D− 05

−0.025 −0.458255551 4.40D− 06 4.435664194 4.14D− 06

−0.0125 −0.458257313 5.59D− 07 4.435680211 5.26D− 07

−0.00625 −0.458257463 2.31D− 07 4.435681576 2.18D− 07

−0.003125 −0.458257538 6.74D− 08 4.435682258 6.43D− 08

−0.0015625 −0.458257565 8.52D− 09 4.435682504 9.05D− 09

Let us consider a convergence numerical test for our non-iterative TM. Table 1 reports the obtained
numerical results for the missing initial condition and the free boundary value for the free BVP (13) with
θ = 0.1 and u0 = 1, as well as the corresponding relative errors denoted by er. An example of the numerical
solutions is shown in figure 1. For this numerical solution, we applied a large step size in order to show the
mesh used and to empathize how our event locator reduces the last step.

3 A Dynamical Free BVP

Suppose a particle of unitary mass is moving against a nonlinear force, given by −1 − u −
(

du
dx

)2

, from the
origin u = 0 to a final position u = 1, our goal is to determine the duration of motion s and the initial
velocity that assures that the particle is momentarily at rest at u = 1; see Meyer [32, pp. 97-99]. This
problem can be formulated as follows

{

d2u
dx2 = −1 − u −

(

du
dx

)2

, x ∈ (0, s),

u(0) = 0, u(s) = 1, du
dx (s) = 0,

(17)

where u and x are the particle position and the time variable, respectively, on the right hand side of the
governing differential equation we have the nonlinear force acting on the particle and s is the free boundary.
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Figure 1: Picture of the numerical solution obtained for θ = 0.1, u0 = 1, and b = 4.5; the obstacle, is
superimposed to the x axis, and is displayed by a black solid line.

Table 2: Convergence of numerical results for the free BVP dynamical model.

∆x u(0) du
dx (0) s

−0.1 1.16D− 02 3.212263787 0.867662139

−0.05 3.54D− 03 3.240676696 0.870143219

−0.025 4.61D− 04 3.2516023692 0.871089372

−0.0125 1.90D− 04 3.252564659 0.871172452

−0.00625 5.42D− 05 3.253049203 0.871214290

−0.003125 9.25D− 06 3.253209165 0.871228100

−0.0015625 3.43D− 06 3.253229900 0.871229890

−0.00078125 5.12D− 07 3.253240276 0.871230785

−0.000390625 2.01D− 07 3.253241381 0.871230881

−0.0001953125 4.62D− 08 3.253241934 0.871230929

In Table 2 we propose a numerical convergence test for decreasing values of the step size.

The obtained results can be contrasted with those reported by Meyer [32, pp. 97-99] where, by using
the invariant imbedding method, he found s = 1.2651 but a value of u(0) = 0.0163 instead of u(0) = 0 as
prescribed by the free BVP (17). The behaviour of the solution can be seen in the figure 2. Again we applied
a large step size in order to show how our event locator reduces the last step.
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Figure 2: Numerical solution for the dynamical free BVP (17) obtained with ∆x = 0.0125.

A free BVP similar to (17) was considered by Na [37, p. 88] where the nonlinear force was replaced by
−u exp(−u). However, in this case it is possible to prove [20], using the conservation of energy principle,
that the free BVP has countable infinite many solutions, with the missing initial conditions given by

du

dx
(0) = ±0.726967811. (18)

4 Length Estimation for Tubular Flow Reactors

Roughly speaking, a tubular flow chemical reactor can be seen as a device where on one side it is introduced
a material A that along its passage inside the reactor undergoes a chemical reaction so that at the exit we
get a product B plus a residual part of A; see figure 3. A nth order chemical reactor is usually indicated
with the notation An → B. A free BVP for a tubular reactor can be formulated as

{

d2u
dx2 = NPe

(

du
dx

+ Run
)

,

u(0) − 1

NP e

du
dx (0) = 1, u(s) = τ, du

dx (s) = 0,
(19)

where u(x) is the ratio between the concentration of the reactant A at a distance x and the concentration
of it at x = 0, NPe, R, n and τ are, the Peclet group, the reaction rate group, the order of the chemical
reaction and the residual fraction of reactant A at exit, respectively. Moreover, NPe and R are both greater
than zero. Finally, for the free BVP (19), the free boundary s is the length of the flow reactor we are trying
to estimate.

This is an engineering problem that consists in determining the optimal length of a tubular flow chemical
reactor with axial missing and has been already treated by Fazio in [16], through an iterative TM, whereas
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Figure 3: Schematic set-up of a tubular flow reactor.

Fazio in [17] made a comparison between the results obtained with a shooting method and the upper bound
of the free boundary value obtained by a non-iterative TM.

Here, for the sake of comparing the numerical results, we fix the parameters as follows: NPe = 6, R = 2,
n = 2, and τ = 0.1. We apply the algorithm outlined above to the numerical solution of the free BVP (19).
Table 3 shows a numerical convergence test for decreasing values of the step size.

Table 3: Convergence of numerical results. Npe = 6, R = 2, n = 2, and τ = 0.1.

∆x u(0) du
dx (0) s

−0.1 0.829314641 −1.008175212 5.117905669

−0.05 0.830537187 −1.010745699 5.119104349

−0.025 0.831147822 −1.012077034 5.119707352

−0.0125 0.831227636 −1.012251496 5.119786158

−0.00625 0.831267467 −1.012338738 5.119825502

−0.003125 0.831271635 −1.012347868 5.119829619

−0.0015625 0.831273719 −1.012352436 5.119831678

−0.00078125 0.831274182 −1.012353449 5.119832135

−0.000390625 0.831274327 −1.012353767 5.119832278

−0.0001953125 0.831274348 −1.012353814 5.119832299

The obtained numerical results are reported on table 4 and compared with numerical results available in
literature.

Table 4: Comparison of numerical results for the tubular flow reactor model.

u(0) du
dx (0) s

iterative TM [16] 0.831280 −1.012298 5.121648

shooting method [17] 0.831274 −1.012354 5.119832

non-iterative TM 0.831274 −1.012354 5.119832

As it is easily seen the computed values are in good agreement with the ones found in [16] and [17]. The
behaviour of the solution can be seen in figure 4. Once again, we used a large step size to make clear how
our event locator reduces the last step size.
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Figure 4: Numerical solution for length estimation of a tubular flow reactor obtained with ∆x = 0.1.

5 Conclusion

In closing, we can outline some further implications coming out from this work. First of all, the algorithm
proposed in this paper can be extended to free BVPs governed by a system of first order autonomous
differential equations belonging to the general class of problems

{

du
dx = q (u) , x ∈ [0,∞),

uj(0) = uj0, u(s) = us,
(20)

where u(x), us ∈ IRd, q : IRd → IRd, with d ≥ 1, j ∈ {1, . . . , d}, uj0 and all components of us are given
constants and s is the free boundary.

Moreover, our algorithm can be applied by using an integrator from the MATLAB ODE suite written
by Samphine and Reichelt [42], and available with the latest releases of MATLAB, with the event locator

option command set in
options = odeset(’Events’,@name)

where “name” is an external, problem dependent, event function.
As mentioned in the introduction, the first application of a non-iterative TM was defined by Töpfer in

[44] more than a century ago. In this paper, by considering the invariance with respect to a translation
group, we have investigated a possible way to solve a large class of free BVPs by a non-iterative TM.

However, it is a simple matter to show a differential equation not admitting any group of transformations:
e.g. the differential equation considered by Bianchi [7, pp. 470-475]. Consequently, it is easy to realize that
non-iterative TMs cannot be extended to every BVPs. Therefore, non-iterative TMs are ad hoc methods.
Their applicability depends on the invariance properties of the governing differential equation and the given
boundary conditions.
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On the other hand, free BVPs governed by the most general second order differential equation, in normal
form, can be solved iteratively by extending a scaling group via the introduction of a numerical parameter
so as to recover the original problem as the introduced parameter goes to one, see Fazio [26, 14, 20, 21]. The
extension of this iterative TM to problems in boundary layer theory has been considered in [18, 19, 23, 24].
Moreover, a further extension to the sequence of free BVPs obtained by a semi-discretization of parabolic
moving boundary problems was repoted in [22].
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Messina.

References

[1] A. Acrivos, M. J. Shah and E. E. Petersen, Momentum and heat transfer in laminar boundary-layer
flows of non-newtonian fluids past external surfaces, AIChE journal, 6(1960), 312–317.

[2] W. F. Ames and E. Adams, Exact shooting and eigenparameter problems, 1(1976), 75–82.

[3] W. F. Ames and E. Adams, Non-linear boundary and eigenvalue problems for the Emden-Fowler equa-
tions by group methods, 14(1979), 35–42.

[4] U. M. Ascher, R. M. M. Mattheij and R. D. Russell, Numerical Solution of Boundary Value Problems
for Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[5] U. M. Ascher and R. D. Russell, Reformulation of boundary value problems into “standard” form, SIAM
Rev., 23(1981), 238–254.

[6] G. G. Belford, An initial value problem approach to the solution of eigenvalue problems, SIAM J.
Numer. Anal., 6(1969), 99–103.

[7] L. Bianchi, Lezioni sulla Teoria dei Gruppi Continui di Trasformazioni, Spoerri, Pisa, 1918.

[8] G. W. Bluman and J. D. Cole, Similarity Methods for Differential Equations, Springer, Berlin, 1974.

[9] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, Berlin, 1989.

[10] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Runge-Kutta and General
Linear Methods, Whiley, Chichester, 1987.

[11] L. Collatz, Monotonicity of Free Boundary Value Problems, In A. Dold and B. Eckmann, editors,
Numerical Analysis, pages 31–45. Springer, Berlin, 1980. Lecture Notes in Mathematics, v. 773.

[12] L. Dresner, Similarity Solutions of Non-Linear Partial Differential Equations, volume 88 of Research
Notes in Math., Pitman, London, 1983.

[13] C. H. Edwards, Newton’s nose-cone problem, Mathematica J., 7(1997), 64–71.

[14] R. Fazio, Normal variables transformation method applied to free boundary value problems, Int. J.
Computer Math., 37(1990), 189–199.

[15] R. Fazio, A free boundary test problem for a non-iterative transformation method and a shooting
method, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur., LXVIII(1991), 141–151.

[16] R. Fazio, The iterative transformation method and length estimation for tubular flow reactors, Appl.
Math. Comput., 42(1991), 105–110.

[17] R. Fazio, Numerical length estimation for tubular flow reactors, J. Comput. Appl. Math., 41(1992),
313–321.



130 A Non-Iterative Transformation Method

[18] R. Fazio, The Falkner-Skan equation: numerical solutions within group invariance theory, Calcolo,
31(1994), 115–124.

[19] R. Fazio, A novel approach to the numerical solution of boundary value problems on infinite intervals,
SIAM J. Numer. Anal., 33(1996), 1473–1483.

[20] R. Fazio, A numerical test for the existence and uniqueness of solution of free boundary problems, Appl.
Anal., 66(1997), 89–100.

[21] R. Fazio, A similarity approach to the numerical solution of free boundary problems, SIAM Rev.,
40(1998), 616–635.

[22] R. Fazio, The iterative transformation method: numerical solution of one-dimensional parabolic moving
boundary problems, Int. J. Computer Math., 78(2001), 213–223.

[23] R. Fazio, Numerical transformation methods: Blasius problem and its variants, Appl. Math. Comput.,
215(2009), 1513–1521.

[24] R. Fazio, lasius problem and Falkner-Skan model: Töpfer’s algorithm and its extension, Comput. &
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