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Abstract

In biological systems, mathematical modeling plays an important role for the characterization of the
binding behavior of the biochemical enzyme inhibitors to the target molecule. Dynamic mathematical
models of biological investigation efficiently serve with reasonable and optimal outcomes. The role of such
models usually need some techniques to attain the reduction in model parameters. This study presents
model techniques that are very useful for model reduction and split the model equations into slow and fast
subsystems. They are Quasi-Equilibrium Approximation (QEA) and Quasi Steady-State Approximation
(QSSA). For identifying analytical approximate solutions in non-competitive enzyme inhibitors , these
techniques play a crucial role for simplifying the model equations and suggest the appropriate reduction
approaches. This study was primarily used to understand the slow and fast subsystems in order to reduce
the number of variables and parameters. Moreover, the analytical solution for biochemical inhibitor
system has been exhaustively discussed which avoid linearization and physically unrealistic assumptions.

1 Introduction

Enzymes are catalysts mostly proteins and their major role in biological systems is to increase the rate of
reaction without itself being consumed by the process. Each enzyme has high specificity for at least one
reaction, and subsequently accelerate the reaction by millions of times. Substances that reduce the activity
of an enzyme-catalysed reaction are known as inhibitors. Basically, inhibitors are low molecular weight
compounds form an enzyme-inhibitor complex when bind with the enzyme, thereby reducing or completely
inhibiting the catalytic activity of the enzyme and hence reducing the rate of reaction [4]. Despite the fact that
catalysts are significant forever, however high enzyme activity can also give rise to some abnormal conditions
and may lead to certain diseases. Hence, overactive enzymes are attractive targets for outgrowth of inhibitor
molecules to relieve disease conditions. Manipulation of enzyme catalysis with inhibitors is hypercritical
for prevention of infectious diseases, treatment of hypertension, control of inflammatory response and more.
Besides inhibitors are acting as therapeutic agents, these also play crucial roles in biological and clinical
research [2, 10]. The entry of substrate to the particular active site of enzyme can be choked by binding
of an inhibitor molecule to that site. Alternatively, sometimes inhibitors not only bind to the active site of
enzyme but can also bind to a site other than the active site and develop a conformational change that stops
the entry of substrate to the active site. Inhibitors take measures directly or indirectly affecting the catalytic
properties of the active site. They are involved with catalytic and enzymatic reactions. Moreover, this
inhibition can be reversible or irreversible. Reversible enzyme inhibition can be competitive, uncompetitive
or non-competitive, each affecting Km (Michaeli’s constant) and Vmax (maximum velocity) in a specific
fashion [20]. In the current study, a non-competitive inhibition will be discussed using basic mathematical
tools.

Non-competitive inhibition is a common type of reversible inhibition. This inhibition is also called mixed
inhibition. The inhibitor binds to the enzyme at a site other than the active site, either to the free enzyme
or ES complex, see Figure 1. A mathematical model has been established to analyze enzymatic reactions of
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cellular metabolism that have a special interest with biotechnology [9]. Fang, X. established a mathematical
model of enzymatic inhibition that is used to simulate two separate inhibition mechanisms for the growth
of M.Tuberculosis cells in an in-vitro environment [6]. The kinetic dynamics in heterogeneous enzymatic
hydrolysis of Cellulose were studied [8] and kinetic equations for reversible enzyme reactions with some
analytical approximate solutions were also established [14]. An algebraic model for the kinetics of covalent
enzyme inhibition at low substrate concentration has been formulated in this direction as well [18].

Figure 1: Non-Competitive Inhibition [1].

Model reduction is a strategy for diminishing the computational intricacy of mathematical models in
numerical simulations. The model reduction process approximates the original model with a model of
reduced complexity, i.e, model reduction is a change on the original system to another system in which the
new model contains a fewer variables than the original one. The process of model reduction is applicable in
case the saturation is cumbersome and the results can not be established analytically. However, reduction
only leads to an approximate version of the original model.

Solving the complex enzymatic reactions is a cumbersome task and hence some well known methods have
been applied in order to describe their dynamics. Assorting the model equations of enzymatic reactions into
the slow and fast subsystems play an important role to describing the model dynamics for biological systems
[1, 11]. In the current study, the major problem is to identify the slow and fast reactions for non-competitive
enzyme inhibitor system and the equations have been divided into slow and fast subsystems by two well-
known methods ; quasi-equilibrium approximation (QEA) and quasi steady-state approximation (QSSA).
These two approaches can be applied in biological systems, in order to reduce variables and parameters
for such systems [22, 23]. These techniques play a major role in model reduction. Initially the quasi-
steady-state approach was first suggested by Briggs and Haldane (1925) [12] and this approach will became
a good technique of model reductions and model analysis for biochemical reactions. Quasi Steady State
Approximation provides a great step in systems biology. The suggested technique can be applicable for non
linear models to assort such systems into slow and fast subsystems. Moreover, QSSA is also used to identify
analytical approximate solutions and is also used to report the mechanisms of miRNA signaling and genetic
pathways [17]. There are some appropriated results that give a significant step forwards to comprehend the
model reduction methods and their applications in biochemical reaction networks and system biology. The
most important and exciting computational methods and tools available for systems biology were developed
and these developing accessibility of large amounts of data will permit models to be tested very finely [3].
There is one more important method known as RCW (Rahmanzadeh-Cah-White) that is used for solving the
Classical Blasius Equation and is governing equation of boundary layer problem. In this method (RCW),
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the solution of the problem is considered as the sum of the Fourier series and a polynomial of degree 4
[21]. Moreover, a mathematical model has been established which gives an approximate analytical solution
using homotopy perturbation method [24]. In this study, we have applied these methods on non-competitive
enzyme inhibition. At the end, the suggested approaches are very efficient to reduce the number of variables
and also to find analytical approximate solutions. There are few more important techniques that have been
used for model reduction in systems biology [19, 15, 5].

2 Materials and Methods

Let E, S and I respectively denote the enzyme, substrate and inhibitor. Also, the complex intermediate
species are EI, ES and ESI with respect to the rate constants ki; (i = 1, 2, 3, ..., 7). In order to establish
efficient and better method to understand the dynamics of non-competitive inhibition, a mathematical
approach has been adapted to study the behavior over fast and slow subsystems. Consider a system of n

reversible enzymatic reactions given below [11]:

m
∑

j=1

aijxj

k
i−

−−⇀↽−−
k

i+

m
∑

j=1

bijxj, i = 1, 2, ..., n,

where xj signify the concentrations of chemical components (metabolites), n their numbers, aij and bij are
stoichiometric coefficients, k+

i and k−

i are reaction constants and m the number of reactions in the system.
The mathematical description of the dynamics of above enzymatic reactions is performed by means of a
system of differential equations :

dx

dt
=

r
∑

j=1

cijvj,

where x ∈ Rm, vj represents the activities of the enzymes participating in the metabolic pathway analysed,
t the time. The coefficients cij = bij − aij are the elements of the stoichiometric matrix. The stoichiometric
matrix contains an information on the structural network, i.e; ”topology” of the enzyme system [11].

In order to define the method, we simply divide a set of variables x(t) into two sets, slow species set xs(t)
and fast species set xf(t). Further the differential equations can be divided into two subsystems:

Slow subsystem:
dxs

dt
= gs(xs(t), xf(t), k).

Fast subsystem:
dxf

dt
=

1

ε
gf (gs(t), gf(t), k),

where x ∈ Rm, xs ∈ Rm1 , xf ∈ Rm2 , k ∈ Rn and m = m1 + m2.

Furthermore, a slow manifold of the system can also be calculated from the algebraic equations,

gf (xs(t), xf(t)) = 0

when
ε → 0.

As long as the QEA is a model reduction method and minimizes the number of parameters and variables,
however, this method gives idea that fast reactions accomplish equilibrium immediately as compared to slow
reactions.

Khoshnow [16] described a system of differential equations of chemical reaction as:

dx

dt
=

∑

s,slow

Rs(x, k)γs +
1

ε

∑

f,fast

Rf(x, k, t)γf , (1)
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where ε is a small parameter (0 < ε � 1); γs and γf are stoichiometric vectors ; Rs and Rf are reaction
rates. Therefore, the fast subsystem takes the following form:

dx

dt
=

1

ε

∑

f,fast

Rf(x, k, t)γf .

Moreover, quasi-equilibrium manifold can also be calculated by using the following algebraic equations:

∑

f,fast

Rf(x, k, t)γf . = 0, (2)

hi(x) = bi, for 1 ≤ i ≤ k + p. (3)

Equation (3) is called linear conservation laws [1, 15]. More information about proposed techniques for
chemical and biological models can be explored from these references [1, 7]. The Kinetic reactions of non-
competitive enzyme inhibition are given by [20]:































E + S
k1
−⇀↽−
k2

ES
k3
7−→ E + P,

E + I
k4
−⇀↽−
k5

EI,

ES + I
k6
−⇀↽−
k7

ESI.

(4)

The concentration of the reactants in equation (4) are denoted by

E = [E], S = [S], I = [I], P = [P ], C1 = [ES], C2 = [EI], C3 = [ESI].

The model differential equations based on the law of mass action are given by

dS

dt
= −k1ES + k2C1, (5)

dE

dt
= −k1ES + k2C1 + k3C1 − k4EI + k5C2, (6)

dC1

dt
= k1ES − k2C1 − k3C1 − k6C1I + k7C3, (7)

dC2

dt
= k4EI − k5C2, (8)

dC3

dt
= k6C1I − k7C3, (9)

dI

dt
= −k4EI + k5C2 − k6C1I + k7C3, (10)

dP

dt
= k3C1. (11)

Consider the following initial conditions

E(0) = e0, S(0) = s0 , I(0) = i0, and C1(0) = C2(0) = C3(0) = P (0) = 0.

The model has the following conservation equations:

C1 + C3 + S + P = s0 ,

I + C2 + C3 = i0,

C1 + C2 + C3 + E = e0.
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By substituting the conservation laws into above system of differential equations (5)–(11), the kinetic equa-
tions take the form:

dS

dt
= −k1S(e0 − i0 + I − C1) + k2C1, (12)

dI

dt
= −k4I(e0 − i0 + I − C1) + k5(S + PC1 + i0 − s0 − I) − k6IC1 + k7(s0 − S − C1 − P ), (13)

dC1

dt
= k1S(e0 − i0 + I − C1) − (k2 + k3 + k6I)C1 + k7(s0 − S − C1 − P ), (14)

dP

dt
= k3C1. (15)

By introducing the following new variables:

τ = k1e0t, u =
I

i0
, v =

S

s0

, w =
C1

e0

and x =
P

e0

.

Therefore, the above system of equations (12)–(15) takes the form (see appendix) :

dv

dτ
= (w − 1) + α1(1 − u) + α2w, (16)

du

dτ
= η(v − 1) + εη(x + w) + α7u(w − 1) + ξu(1 + u) + α9(1 − u) + α4uw, (17)

ε
dw

dτ
= v(1 − w) − α1v(1 − u) + ε[α3w + α4α1uw + α5(w + x)] + α5(1 − v), (18)

dx

dτ
= α11w. (19)

with initial conditions u(0) = 1, v(0) = 1, w(0) = 0 and x(0) = 0. It is clear that the above system of
equations (16)–(19) can be presented in the slow and fast forms. Therefore, we can use QSSA when ε → 0,
then the equations take the form

dv

dt
= (w − 1) + α1(1 − u) + α2w, (20)

du

dt
= η(v − 1) + εη(x + w) + α7u(w − 1) + ξu(1 + u) + α9(1 − u) + α4uw, (21)

0 = v(1 − w) − α1v(1 − u) + ε[α3w + α4α1uw + α5(w + x)] + α5(1 − v), (22)

dx

dt
= α11w. (23)

Equation (22) can be solved for w in terms of u and v, we have

w =
v + α5(1 − v) − α1v(1 − u)

v
. (24)

Thus, the approximate solution for equations (16)–(19) and the manifold M0 are relatively close. The slow
manifold M0 is given by

M0 =

{

(u, v, x) : u, v, x ∈ [0, 1]; w =
v + α5(1 − v) − α1v(1 − u)

v

}

.

By substituting equation (24) into equations (20), (21) and (23), the following differential equation close to
the manifold M0 are obtained.

dv

dτ
= β

1 − v

v
− κ(1 − u) + λ,

du

dτ
= η(v − 1) + ξu(1 − u) + (γ + µu)(1 − u) + (υ + σu)(

1 − v

v
) + α4u + εη(1 + x),

dx

dτ
= α11

{

v + α5(1 − v) − α1v(1 − u

v

}

.
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Using the technique of QEA for chemical reactions (4), we assume the (2) reaction of the given system of
equations, i.e,

E + I
k4
−⇀↽−
k5

EI,

goes equilibrium very quickly:

k4 =
k+

ε
, k5 =

k−

ε
, k+ =

k4e0

i0
and k− =

k5e0

i0
.

This means k4 and k5 are large constants in comparison with k1 and k2. Thus, equations (5)–(11) take the
form of equation (1)

dS

dt
= gs1

(S, E, C1),

dE

dt
= gs1

(S, E, C1) + gs2
(C1) +

1

ε
gf (E, I, C2),

dI

dt
=

1

ε
gf(E, I, C2) + gs3

(I, C1, C3),

dC1

dt
= −gs1

(S, E, C1) − gs2
(C1) + gs3

(I, C1, C3),

dC2

dt
= −

1

ε
gf(E, I, C2),

dC3

dt
= −gs3

(C1, C3, I),

dP

dt
= gs2

(C1).

where gs1
(S, E, C1) = −k1ES +k2C1, gs2

(C1) = k3C1, gs3
(I, C1, C3) = (−k6C1I +k7C3) and gf(E, I, C2) =

−k+EI + k−C2 when ε → 0, we can apply the Quasi- equilibrium approximation.
As a result, the model has two slow variables b1(C2, E) = C2 + E and b2(I, C2) = I − C2. The slow

manifold is calculated from non-linear equation gf (E, I, C2) = 0. This is given by

M0 =

{

(E, I, C2) ∈ R2 : I =
k−C2

k+E

}

.

After fixing the slow variables b1 and b2, we have the following equations

−k+EI + k−C2 = 0,

C2 + E = 0,

I − C2 = 0.

The following quadratic equation for C2 is obtained:

k+C2
2 − (k+b1 − k+b2 − k−)C2 − k+b1b2 = 0. (25)

Equation (25) can be solved analytically for C2. We obtain

C2(b1, b2) =
1

2k+

{

(k+b1 − k+b2 − k−) ± 2
√

(k+b1 − k+b2 − k−)2 + 4k+k+b1b2

}

or,

C2(b1, b2) =
1

2

{

(b1 − b2 −
k−

k+
) −

2

√

(b1 − b2 −
k−

k+
)2 + 4b1b2

}

.
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We select a negative sign in order to have positive concentrations of I, E and C2. If b1 → 0 and b2 → 0, then
C2 → 0. Moreover, the variables E and I were computed and are given by

E(b1, b2) = b1 −
1

2

{

(b1 − b2 −
k−

k+
) −

2

√

(b1 − b2 −
k−

k+
)2 + 4b1b2

}

,

I(b1, b2) = b2 −
1

2

{

(b1 − b2 −
k−

k+
) −

2

√

(b1 − b2 −
k−

k+
)2 + 4b1b2

}

.

3 Discussion and Conclusion

A mathematical model has been established that describes the approximate analytical solutions for non-
competitive enzyme inhibition to the system of a simple enzymatic reactions. Rate equations are in general
non-linear functions of chemical components (x) and the parameters (pk). In the present scenario, the
differential equations become also non linear and the solution of the equations can not be obtained in a
closed analytical form. So, in order to deal with such equations we employed two simple techniques; quasi-
steady state approximation and quasi- equilibrium approach. The proposed techniques show a principal
role for analyzing complex problem in systems biology. These techniques allowed us to divide the whole
system of equations into slow and fast sub-system and were later used to calculate slow manifolds. The
rationale behind the current study was to understand the techniques that reduces the number of variables
and parameters in order to find analytical approximate solutions. The number of parameters are reduced by
the fast subsystem. This solution procedure can be easily extended to all kinds of enzymatic reaction models
including enzyme inhibitors. Such techniques can also help us to modify some existing results on heat and
mass transport in cancerous tumors under local therapy[13]. This study can also be used to calculate some
approximate solutions of non-linear enzymatic reaction models.
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4 Appendix

ε = e0

s0
, α1 = i0

e0
, α2 = k2

k1s0
,

α3 = −
k2+k3

k1e0
, α4 = −

k6

k1
, α5 = k7

k1e0
,

α7 = k4

k1
, α8 = k5

k1i0
, α9 = k5

k1e0
,

α10 = k7

k1i0
, α11 = k3

k1e0
.

ξ = α1α7, η = α8−α10

ε
, γ = (α9 − εηα1),

µ = −α1(α7 + α4), ν = εηα5, σ = α5(α7 + α4),

λ = α2, κ = α1α2.


