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Abstract

The purpose of this paper is to present some fixed and coincidence point theorems for single-valued
and multi-valued mappings satisfying the non-expansive type conditions in the context of asymptotically
regular mappings and orbital completeness of the space.

1 Introduction

Let (X, d) be a metric space, and T : X → X. Then T is said to be contraction (resp. non-expansive)
mapping, if there exists a nonnegative real number k < 1 (resp. k = 1) such that the inequality d(Tx, Ty) ≤
kd(x, y) holds for any x, y ∈ X. Moreover, if X is a complete space, by Banach contraction principle [2],
T has a unique fixed point in X. However, non-expansive mappings may not have any fixed point or have
more than one fixed point on complete metric spaces.
From last few decades, there exists very abundant literature about contractive and non-expansive type

mappings, where the contractive and nonexpansive conditions are replaced with more general conditions,
and many fixed point theorems have been obtained for non-expansive type mappings in metric spaces with
their applications in various areas (see [4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19], and references therein).

In this paper, N and R stand for set of positive integers and set of reals, respectively.

2 Main Results

In this section, we have proved three important results of fixed point theory, which are for a single valued
mapping, a pair of single valued mappings and a hybrid pair of mappings, by using non-expansive type
conditions in the context of asymptotically regular mappings and orbitally complete spaces.

2.1 Fixed Point Theorem for a Single Valued Mapping

Throughout this part, for all x, y ∈ X, we consider the following non-expansive type condition:

d(Tx, Ty) ≤ αd(x, y) + β [(x, Tx) + d(y, Ty)] + γ [(x, Ty) + d(y, Tx)]

+δ [M(x, y) + hm(x, y)] (1)

where
α ≥ 0, β, γ, δ > 0, 0 < h < 1, (2)

α+ 2β + 2γ + 2δ = 1, (3)

M(x, y) = max{d(x, Ty), d(y, Tx)},
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and
m(x, y) = min{d(x, Ty), d(y, Tx)}.

Browder and Petryshyn [5] introduced the concept of asymptotically regular mapping at a point in the
Hilbert spaces. A mapping T on a metric space (X, d) is said to asymptotically regular at x ∈ X, if
limn→∞ d(Tnx, Tn+1x) = 0.

Proposition 1 Let T be a self-mapping on X satisfying the condition (1) with (2) and (3). Then T is
asymptotically regular at each point in X.

Proof. Let x0 be any point in X, we define a sequence {xn} such that xn+1 = Txn = Tnx0, where
n ∈ N ∪ {0}. From (1),

d(xn, xn+1) = d(Txn−1, Txn)

≤ αd(xn−1, xn) + β[d(xn−1, xn) + d(xn, xn+1)] + γ[d(xn−1, xn+1) + d(xn, xn)]

+δ[M(xn−1, xn) + hm(xn−1, xn)]. (4)

Here, m(xn−1, xn) = 0 and M(xn−1, xn) = d(xn−1, xn+1) ≤ d(xn−1, xn) + d(xn, xn+1).
Suppose that d(xn, xn+1) > d(xn−1, xn) for some n. Then by (4) and (3), we have

d(xn, xn+1) < αd(xn, xn+1) + 2βd(xn, xn+1)] + 2γd(xn, xn+1) + 2δd(xn, xn+1)

< (α+ 2β + 2γ + 2δ)d(xn, xn+1)

= d(xn, xn+1),

which is a contradiction. Therefore d(xn, xn+1) ≤ d(xn−1, xn) for all n. Hence,

d(xn−1, Txn−1) ≤ d(x0, Tx0) (n = 1, 2, 3, ...). (5)

Now using (1), we have

d(x1, Tx2) = d(Tx0, Tx2)

≤ αd(x0, x1) + β[d(x0, Tx0) + d(x2, Tx2)] + γ[(x0, Tx2) + d(x2, Tx0)]

+δ[M(x0, x2) + hm(x0, x2)],

from (5) and the triangle inequality, we get

d(x1, Tx2) ≤ 2αd(x0, x1) + 2βd(x0, x1) + 4γd(x0, x1) + δ(3 + h)d(x0, x1).

Then
d(x1, Tx2) ≤ [2(1− β)− δ(1− h)]d(x0, x1). (6)

By (1), we have

d(Tx1, Tx2) ≤ α′d(x1, x2) + β
′[d(x1, Tx1) + d(x2, Tx2)]

+γ′[(x1, Tx2) + d(x2, Tx1)] + δ
′[M(x1, x2) + hm(x1, x2)].

Here, M(x1, x2) = d(x1, Tx2), m(x1, x2) = 0, and α′, β
′, γ′, δ′ are nothing but α, β, γ, δ in such a way that

α′ + 2β′ + 2γ′ + 2δ′ = 1. Then by using (5) and (6), we have

d(Tx1, Tx2) ≤ α′d(x0, x1) + 2β
′d(x0, x1) + (γ

′ + δ′)d(x1, Tx2)

≤ (α′ + 2β′)d(x0, x1) + (γ
′ + δ′) (2(1− β)− δ(1− h)) d(x0, x1)

≤ (α′ + 2β′ + 2γ′ + 2δ′ − 2γ′β − γ′δ(1− h)− 2δ′β − δ′δ(1− h))d(x0, x1)
⇒ d(Tx1, Tx2) ≤ (1− s2(1− h))d(x0, x1), where s2 = δδ′. (7)
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Again from (5) and (7) we have,

d(Tx2, Tx3) ≤ d(Tx1, Tx2) ≤ (1− s2(1− h))d(x0, x1).

And from (1)and (5) we obtain,

d(Tx2, Tx4) ≤ αd(x2, x4) + β[d(x2, Tx2) + d(x4, Tx4)] + γ[(x2, Tx4) + d(x4, Tx2)]

+δ[M(x2, x4) + hm(x2, x4)]

≤ 2αd(x2, x3) + 2βd(x2, x3) + 4γd(x2, x3) + δ(3 + h)d(x2, x3)

≤ (2(1− β)− δ(1− h)) d(x0, Tx0). (8)

From (5), (8), we obtain

d(Tx3, Tx4) ≤ α′d(x3, x4) + β
′[d(x3, Tx3) + d(x4, Tx4)] + γ

′[(x3, Tx4) + d(x4, Tx3]

+δ[M(x3, x4) + hm(x3, x4)]

≤ (α′ + 2β′)d(x3, x4) + (γ
′ + δ′)d(x3, Tx4)

≤ (α′ + 2β′)d(x3, x4) + (γ
′ + δ′)(2(1− β)− δ(1− h))d(x2, x3)

≤ (1− s2(1− h))2d(x0, x1).

Moreover,
d(Tx4, Tx5) ≤ d(Tx3, Tx4) ≤ (1− s2(1− h))2d(x0, x1),

where α′ ≥ 0, β′, γ′, δ′ > 0, α′ + 2β′ + 2γ′ + 2δ′ = 1 and s2 = δδ′.
Analogously, d(Tx5, Tx6) ≤ (1− s2(1− h))3d(x0, x1), and continuing this process, we have

d(Tnx0, T
n+1x0) ≤ (1− s2(1− h))[

n
2 ]d(x0, Tx0), (9)

for all n ∈ N, where
[
n
2

]
denotes the greatest integer not exceeding n

2 . Since 0 < s ≤ 1
2 and h < 1, we have

limn→∞ d(Tnx0, T
n+1x0) = 0, i.e., T is asymptotically regular at x0.

Proposition 2 If T is a self-mapping on X satisfying the condition (1) with (2) and (3). If T has a fixed
point (say p), then T is continuous at p.

Proof. Let xn → p = Tp. Then, by using (3) and triangular inequality in the condition (1), we get

d(Txn, Tp) ≤ αd(xn, p) + β[d(xn, Txn) + d(p, Tp)] + γ[(xn, Tp) + d(p, Txn)]

+δ[M(xn, p) + hm(xn, p)],

≤ αd(xn, p) + β[d(xn, p) + d(p, Txn)] + γ[d(xn, p) + d(p, Txn)]

+δ[max{d(xn, p), d(p, Txn)}+ hmin{d(xn, p), d(p, Txn)}]
< (α+ 2β + 2γ + 2δ)d(xn, p) = d(xn, p).

Now, Txn → Tp whenever n→∞. Therefore, T is continuous at p.

Theorem 1 Let (X, d) be a non-empty complete metric space, and let T be a self-mapping on X satisfying
the condition (1) with (2) and (3). Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. Define a sequence {xn} in X such that xn+1 = Tnx0. Then, from (9), we
obtain that {Tnx0} is a Cauchy sequence. Since X is complete, there is a p ∈ X such that

lim
n→∞

Tnx = p.

Now, from (1), we have

d(Tnx, Tp) ≤ αd(Tn−1x, p) + β[d(Tn−1x, Tnx) + d(p, Tp)] + γ[(Tn−1x, Tp) + d(p, Tnx)]

+δ[M(Tn−1x, p) + hm(Tn−1x, p)].
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Taking the limit as n→∞,
d(p, Tp) ≤ (β + γ + δ)d(p, Tp).

Then p = Tp. Now, suppose that p and q are two fixed points of T . Then by (1), we get

d(p, q) = d(Tp, Tq)

≤ αd(p, q) + β[d(p, Tp) + d(q, T q)] + γ[d(p, Tq) + d(q, Tp)]

+δ[M(p, q) + hm(p, q)]

= (α+ 2γ + δ(1 + h))d(p, q).

Using (3), we get
d(p, q) ≤ (1− (2β + δ(1− h)))d(p, q)

which implies p = q. Hence, T has a unique fixed point.

Now, we take the following examples for vindication of Theorem 1.

Example 1 Let X=[0, 10] ∪ {12} be a usual metric space. Define T : X → X as:

T (x) =

{
10 if 0 ≤ x ≤ 10,
9 if x = 12.

Then, it can be seen easily, T is satisfying the condition (1) for α = 2
10 , β =

2
10 , γ =

1
10 , δ =

1
10 , and 10 is

only fixed point of T .

Example 2 Let X = {1, 2, 4} be a usual metric space. Define T : X → X as: T1 = 2, T2 = 2, T4 = 1.
Then, it can be seen easily, T is satisfying the condition (1) for α = 2

10 , β =
2
10 , γ =

1
10 , δ =

1
10 , and 2 is

only fixed point of T .

Here, we also give an another example in support of Theorem 1.

Example 3 Let X = {0, 1, 2}. Define T : X → X as: T0 = 0, T1 = 0, T2 = 1. The metric d on X is
defined by d(0, 0) = d(1, 1) = d(2, 2) = 0, d(0, 1) = d(1, 0) = 2, d(0, 2) = d(2, 0) = 1 and d(1, 2) = d(2, 1) = 1.
Then T satisfying all the condition (1) for α = 2

10 , β =
2
10 , γ =

1
10 , δ =

1
10 , and 0 is only fixed point of T .

However, T does not satisfy the condition of result of [12] for x = 0, y = 2 ([12, Theorem 1.2]).

Remark 1 Theorem 1 is generalization of results of [4, 6, 10, 11, 12], and others.

2.2 Coincidence Point Theorem for a Pair of Single Valued Mappings

First we recall some definitions which are very important to our work in this part.

Definition 1 ([13]) Let f and g be two self-mapping of a metric space X. Then f and g are said to be com-
patible if limn→∞ d(fgxn, gfxn) = 0, whenever {xn} is a sequence such that limn→∞ fxn = limn→∞ gxn =
t ∈ X.

Let T and f be self-mappings on a metric space (X, d) such that T (X) ⊂ f(X). Then, for any x0 ∈ X,
we choose a point x1 ∈ X such that fx1 = Tx0. Continuing this process, we can choose a sequence {xk} in
X such that fxk+1 = Txk, k = 0, 1, 2, . . ., and the sequence {fxn} is called a T -sequence with initial point
x0.

Definition 2 ([1]) Let T and f be self-mappings on a metric space (X, d) such that T (X) ⊂ f(X). Then
the mapping T is said to be asymptotically f -regular at point x0 ∈ X, if limn→∞ d(fxn, fxn+1) = 0, where
{fxn} is a T -sequence with initial point x0.
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In the same paper, Abbas et al. [1] obtained the following result on metric space under the notion of
asymptotically f -regular mappings.

Theorem 2 Let T and f be self-mappings on a metric space (X, d) such that T (X) ⊂ f(X). Assume that,
for all x, y ∈ X, the following condition holds:

d(Tx, Ty) ≤ a1F1[min{d(fx, Tx), d(fy, Ty)}] + a2F2[d(fx, Tx)d(fy, Ty)]
+a3d(fx, fy) + a4[d(fx, Tx) + d(fy, Ty)] + a5[d(fx, Ty) + d(fy, Tx)],

where for i = 1, 2, 3, 4, 5, ai ≥ 0 such that for every arbitrary fixed k > 0, 0 < λ1 < 1 and 0 < λ2 < 1, we
have a4 + a5 ≤ λ1, a3 + 2a5 ≤ λ2 and a1, a2 ≤ k. If f(X) or T (X) is a complete subspace of X and T is
asymptotically f -regular at some point x0 ∈ X, then T and f have a coincidence point.

Now, in the direction of asymptotically f -regular mappings, we establish the following result.

Theorem 3 Let T and f be self-mappings on a metric space (X, d) satisfying, for all x, y ∈ X, the following
condition:

d(Tx, Ty) ≤ αd(fx, fy) + β[d(fx, Tx) + d(fy, Ty)]

+γ[d(fx, Ty) + d(fy, Tx)] + δ[Mf (x, y) + hmf (x, y)], (10)

where α ≥ 0, β, γ, δ > 0 and 0 < h < 1 with α + 2β + 2γ + 2δ = 1, Mf (x, y) = max{d(fx, Ty), d(fy, Tx)}
and mf (x, y) = min{d(fx, Ty), d(fy, Tx)}. If T (X) ⊂ f(X) and T is asymptotically f -regular at some point
x0 in X, and one of the following holds:

(a) X is complete and f is surjective;

(b) X is complete, f is continuous, and T and f are compatible;

(c) f(X) is complete subspace of X;

(d) T (X) is complete subspace of X.

Then f and T have a coincidence point in X. Moreover, the coincidence value is unique, i.e., fp = fq,
whenever fp = Tp and fq = Tq.

Proof. Let x0 ∈ X be an arbitrary. Since T (X) ⊂ f(X), we may construct a sequence fxn+1 = Txn for
n ∈ N ∪ {0}. Now, from (10), we get (with h = 1)

d(fxn+1, fxn+2) ≤ αd(fxn, fxn+1) + β[d(fxn, Txn) + d(fxn+1, Txn+1)]

+γ[d(fxn, Txn+1) + d(fxn+1, Txn)] + δ[Mf (xn, xn+1) +mf (xn, xn+1)].

If for some n, d(fxn+1, fxn+2) > d(fxn, fxn+1), then in the above inequality results as

d(fxn+1, fxn+2) < (α+ 2β + 2γ + 2δ)d(fxn+1, fxn+2) = d(fxn+1, fxn+2),

which is a contradiction. Therefore,

d(fxn+1, fxn+2) ≤ d(fxn, fxn+1) for all n. (11)

Without loss of generality, for m > n, we have

d(fxn, fxm) ≤ d(fxn, fxn+1) + d(fxn+1, fxm+1) + d(fxm+1, fxm)

= d(fxn, fxn+1) + d(fxm+1, fxm) + d(Txn, Txm).
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Now from (10), (11) and triangular inequality, we obtain

d(fxn, fxm) ≤ d(fxn, fxn+1) + d(fxm+1, fxm)

+αd(fxn, fxm) + β[d(fxn, Txn), d(fxm, Txm)]

+γ[d(fxn, Txm) + d(fxm, Txn)] + δ[Mf (xn, xm) +mf (xn, xm)]

≤ d(fxn, fxn+1) + d(fxm+1, fxm) + αd(fxn, fxm)

+γ[d(fxn, fxm) + d(fxm, fxm+1) + d(fxm, fxn) + d(fxn, fxn+1)]

+β[d(fxn, fxn+1) + d(fxm, fxm+1)]

+δ[(d(fxn, fxm) + d(fxm, fxm+1)) + (d(fxm, fxn) + d(fxn, fxn+1))]

= (α+ 2γ + 2δ)d(fxn, fxm) + β[d(fxn, fxn+1) + d(fxm, fxm+1)]

+(1 + γ + δ)[d(fxm, fxm+1) + d(fxn, fxn+1)].

Then

d(fxn, fxm) =
(1 + γ + δ

2β

)
[d(fxm, fxm+1) + d(fxn, fxn+1)].

Since T is asymptotically f -regular, then the right hand side of the above inequality tends to zero, as
m,n → ∞. Thus, limm,n→∞ d(fxn, fxm) = 0. It follows that {fxn} is a Cauchy sequence in X. Now, we
consider the following cases:

(a) Suppose X is complete and f is surjective. Then there exists a point p ∈ X with limn→∞ fxn = p and
a point z ∈ X such that p = fz, and from (10), we get (with h = 1)

d(fz, Tz) ≤ d(fz, fxn+1) + d(Txn, T z)

≤ d(fz, fxn+1) + αd(fxn, fz) + β[d(fxn, Txn) + d(fz, Tz)]

+γ[d(fxn, T z) + d(fz, Txn)] + δ[Mf (xn+1, z) +mf (xn+1, z)].

≤ d(fz, fxn+1) + αd(fxn, fz) + β[d(fxn, fxn+1) + d(fz, Tz)]

+γ[d(fxn, T z) + d(fz, fxn+1)]

+δ[max{d(fxn, fxn+1), d(fz, Tz)}+min{d(fxn, fxn+1), d(fz, Tz)}],

making n → ∞, we get d(fz, Tz) ≤ (β + γ + δ)(fz, Tz) which implies p = fz = Tz. Hence, f and T
have a coincidence point.

(b) Suppose that X is complete, f is continuous, and f and T are compatible. Then, limn→∞ fxn = p
implies limn→∞ ffxn = fp, and from (10), we get (with h = 1)

d(fp, Tp) ≤ d(fp, ffxn+1) + d(fTxn, Tp)

≤ d(fp, ffxn+1) + d(fTxn, Tfxn) + d(Tfxn, Tp)

≤ d(fp, ffxn+1) + d(fTxn, Tfxn) + αd(ffxn, fp)

+β[d(ffxn, T fxn) + d(fp, Tp)] + γ[d(ffxn, Tp) + d(fp, Tfxn)]

+δ[Mf (fxn, p) +mf (fxn, p)].

Note that, since limn→∞ fxn = limn→∞ Txn = p, and f and T are compatible, limn→∞ d(fTxn, Tfxn) =
0. Taking the limit as n→∞, above inequality yields

d(fp, Tp) ≤ (2β + 2γ + 2δ)d(fp, Tp)

Then
d(fp, Tp) ≤ (1− α)d(fp, Tp).

It implies that fp = Tp.
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(c) If f(X) is complete subspace of X, then p ∈ f(X). Suppose z ∈ f−1p, then p = fz and the proof is
completed by case (a).

(d) If T (X) is complete subspace of X, then p ∈ T (X) ⊂ f(X), and the proof is completed by case (c).

To establish uniqueness, suppose that q is another coincidence point of f and T , i.e., fp = Tp, fq = Tq.
Then, from (10), we have

d(Tp, Tq) ≤ αd(fp, fq) + β[d(fp, Tp) + d(fq, T q)] + γ[d(fp, Tq) + d(fq, Tp)]

+ δ[Mf (p, q) +mf (p, q)]

≤ (α+ 2γ + 2δ)d(Tp, Tq).

Then
d(Tp, Tq) ≤ (1− 2β)d(Tp, Tq)

which implies that Tp = Tq, and hence fp = fq.

Remark 2 Taking f = I (identitymapping onX) in Theorem 3, we find an another version of Theorem 1
for h = 1.

2.3 Coincidence Point Theorem for a Hybrid Pair of Mappings

Let (X, d) be a metric space. A mapping T : X → 2X is said to be multi-valued mapping, where 2X is
collection of all non-empty subsets of X. We denote by CB(X)(C(X) respectively) the family of all non-
empty closed bounded (compact respectively) subsets of X. Then a function H : CB(X) → R, defined
by

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)

}
,

is called the Hausdorff metric for A,B ∈ CB(X)(C(X) respectively), where d(x,B) = infy∈B d(x, y). Now,
we recall some definitions which are the following.

Definition 3 ([9]) An orbit of the multi-valued mapping T at a point x0 ∈ X is a sequence {xn : xn ∈
Txn−1}. A space X is T -orbitally complete if every Cauchy sequence of the form {yn : yn ∈ Tyn−1}
converges in X.

Definition 4 ([18]) Let (X, d) be a metric space, T : X → C(X), and let S be a self-mapping of X.
If, for a point x0 ∈ X, there exists a sequence {xn} ⊂ X such that Sxn+1 ∈ Txn, n ∈ N ∪ {0}, then
OS(x0) = {Sxn : n = 1, 2, 3, . . .} is an orbit of (T, S) at x0. A space X is called (T, S)-orbitally complete if
every Cauchy sequence of the form {Sxn : Sxn ∈ Txn−1} converges in X.

Now, we prove the following result by using above mentioned concepts.

Theorem 4 Let (X, d) be a metric space, and T : X → C(X). Let S be a self-mapping of X such that for
all x, y ∈ X,

H(Tx, Ty) ≤ αd(Sx, Sy) + β[(Sx, Tx) + d(Sy, Ty)]

+γ[(Sx, Ty) + d(Sy, Tx)] + δ[Ms(x, y) + hms(x, y)], (12)

where α ≥ 0, β, γ, δ > 0 and 0 < h < 1 with α+2β+2γ+2δ = 1 and Ms(x, y) = max{(Sx, Ty), d(Sy, Tx)},
ms(x, y) = min{(Sx, Ty), d(Sy, Tx)}. If T (X) ⊂ S(X), and one of the following holds:

(a) X is (T, S)-orbitally complete and S is surjective,

(b) S(X) is (T, S)-orbitally complete,
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(c) T (X) is (T, S)-orbitally complete.

Then S and T have a coincidence point in X, i.e., there exists z ∈ X such that Sz ∈ Tz.

Proof. Let x0 ∈ X and y0 = Sx0. Then, we construct sequences {xn} and {yn} as follows. Since
T (X) ⊂ S(X), we can choose y1 = Sx1 ∈ Tx0. If Tx0 = Tx1, choose y2 = Sx2 ∈ Tx1 such that y1 = y2. If
Tx0 6= Tx1, choose y2 = Sx2 ∈ Tx1 such that d(y1, y2) ≤ H(Tx0, Tx1) (such a choice is possible because Tx
is compact for each x ∈ X). In general, choose yn+1 = Sxn+1 ∈ Txn, for each n ∈ N∪{0}, and yn+1 = yn+2
if Txn = Txn+1 and d(yn+1, yn+2) ≤ H(Txn, Txn+1), otherwise. Now, from (12) impies (with h = 1)

d(yn+1, yn+2) ≤ H(Txn, Txn+1)

≤ αd(Sxn, Sxn+1) + β [d(Sxn, Txn) + d(Sxn+1, Txn+1)]

+γ [d(Sxn, Txn+1) + d(Sxn+1, Txn)] + δ[Ms(xn, xn+1) +ms(xn, xn+1)]

≤ αd(yn, yn+1) + β [d(yn, yn+1) + d(yn+1, yn+2)]

+γ [d(yn, yn+2) + d(yn+1, yn+1)]

+δ[max{d(yn, yn+2), d(yn+1, yn+1)}+min{d(yn, yn+2), d(yn+1, yn+1)}].

Suppose that d(yn+1, yn+2) > d(yn, yn+1) for some n. Then, substituting in the above inequality, we have

d(yn+1, yn+2) ≤ αd(yn, yn+1) + β [d(yn, yn+1) + d(yn+1, yn+2)]

+γ [d(yn, yn+2) + d(yn+1, yn+1)] + δ[{d(yn, yn+2) + d(yn+1, yn+1)}].

It implies that d(yn+1, yn+2) < d(yn+1, yn+2), which is a contradiction. Therefore,

d(yn+1, yn+2) ≤ d(yn, yn+1) for all n. (13)

Now, if d(Sxn−1, Sxn+1) ≥ d(Sxn−1, Txn−1), then the condition (12) implies (with h = 1),

d(yn, yn+2) ≤ H(Txn−1, Txn+1)

≤ αd(Sxn−1, Sxn+1) + β [d(Sxn−1, Txn−1) + d(Sxn+1, Txn+1)]

+γ [d(Sxn−1, Txn+1) + d(Sxn+1, Txn−1)]

+δ[Ms(xn−1, xn+1) +ms(xn−1, xn+1)]

≤ αd(yn−1, yn+1) + β [d(yn−1, yn) + d(yn+1, yn+2)]

+γ [d(yn−1, yn+2) + d(yn+1, yn)] + δ[max{d(yn−1, yn+2), d(yn+1, yn)}
+min{d(yn−1, yn+2), d(yn+1, yn)}].

Using (13) and triangular, we obtain

d(yn, yn+2) ≤ (2α+ 2β + 2γ + 2δ)d(yn−1, yn) + (γ + δ)d(yn, yn+2)

it implies d(yn, yn+2) ≤
(

1 + α

1− γ − δ

)
d(yn−1, yn).

Thus, d(yn, yn+2) ≤ k1d(yn−1, yn), where k1 = (1+α)
(1−γ−δ) < 2.

Now, if d(Sxn−1, Sxn+1) < d(Sxn−1, Txn−1), then the condition (12) implies (with h = 1),

d(yn, yn+1) ≤ H(Txn−1, Txn)

≤ αd(Sxn−1, Sxn) + β [d(Sxn−1, Txn−1) + d(Sxn, Txn)]

+γ [d(Sxn−1, Txn) + d(Sxn, Txn−1)]

+δ[Ms(xn−1, xn) +ms(xn−1, xn)]

≤ αd(yn−1, yn) + β [d(yn−1, yn) + d(yn, yn+1)]

+γ [d(yn−1, yn+1) + d(yn, yn)] + δ[max{d(yn−1, yn+1), d(yn, yn)}
+min{d(yn−1, yn+1), d(yn, yn)}].
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It implies that

d(yn, yn+1) <

(
α+ β + γ + δ

1− β

)
d(yn−1, yn).

So

d(yn, yn+2) ≤ d(yn, yn+1) + (yn+1, yn+2) ≤ 2d(yn, yn+1)

<
2(α+ β + γ + δ)

(1− β) d(yn−1, yn) =
(1 + α)

(1− β)d(yn−1, yn).

Thus d(yn, yn+2) ≤ k2d(yn−1, yn), where k2 = (1+α)
(1−β) < 2. Taking k = max{k1, k2}, we get 0 < k < 2, and

d(yn, yn+2) ≤ k d(yn−1, yn), for all n ∈ N. (14)

From inequalities (12),(13) and (14), we get (with h = 1)

d(yn+1, yn+2) ≤ αd(yn, yn+1) + β[d(yn, yn+1) + d(yn+1, yn+2)]

+γ[d(yn, yn+2) + d(yn+1, yn+1)] + δ[max{d(yn, yn+2), d(yn+1, yn+1)}
+min{d(yn, yn+2), d(yn+1, yn+1)}]

≤ (α+ 2β + k(γ + δ))d(yn−1, yn).

Thus,
d(yn+1, yn+2) ≤ λd(yn−1, yn), ∀ n ∈ N, (15)

where λ = (α+ 2β + k(γ + δ)) < 1.
Using induction and (13) and (15), we obtain d(yn, yn+1) ≤ λ[

n
2 ]d(y0, y1), for all n ∈ N, where

[
n
2

]
denotes

the greatest integer value. Hence, {yn} is a Cauchy sequence in X, and it is convergent to a point p ∈ X in
cases (a)—(c).
Now, if S is surjective, then there exists a point z ∈ X such that p = Sz. This is obviously true in cases

(b) and (c). From (12),

d(Sz, Tz) ≤ d(Sz, Sxn+1) +H(Txn, T z)

≤ d(Sz, Sxn+1) + αd(Sxn, Sz) + β[d(Sxn, Txn) + d(Sz, Tz)]

+γ[d(Sxn, T z) + d(Sz, Txn)] + δ[Ms(xn, z) +ms(xn, z)]

Then

d(p, Tz) ≤ d(p, yn+1) + αd(yn, p) + β[d(yn, yn+1) + d(p, Tz)]

+γ[d(yn, T z) + d(p, yn+1)] + [max{d(yn, T z), d(p, yn+1)}
+min{d(yn, T z), d(p, yn+1)}].

Taking the limit as n → ∞, we have d(p, Tz) ≤ (β + γ + δ)d(p, Tz) which implies that Sz ∈ Tz. Hence, S
and T have a coincidence point.

3 An Application to Dynamic Programming

In this section, we consider the functional equation given by Bellman and Lee [3] and find solution using our
condition.
Let U and V be Banach spaces and W ⊂ U,D ⊂ V . Let B(W ) denote the set of all bounded real valued

functions on W . It is well known that B(W ) endowed with the metric,

dB(h, k) = sup
x∈W

|h(x)− k(x)|, h, k ∈ B(W ) (16)
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is a complete metric space. Bellman and Lee [3] introduced the following basic form of the functional equation
of dynamic programming:

p(x) = sup
y
H(x, y, p(τ(x, y))), (17)

where x and y respresent the state and decision vectors respectively, and τ : W × D → W represents the
transformation of the process and p(x) represents the optimal return function with initial state x.
Now, we will study the existence and uniqueness of the solution of the following functional equation:

p(x) = sup
y
[g(x, y) +G(x, y, p(τ(x, y)))], x ∈W (18)

where g : W × D → R and G : W × D × R → R are bounded functions. Let T : B(W ) → B(W ) be a
mapping defined by

T (h(x)) = sup
y
{g(x, y) +G(x, y, h(τ(x, y)))}, (19)

where h ∈ B(W ) and x ∈W .

Theorem 5 If there exist α ≥ 0, β, γ, δ > 0 and 0 < h < 1 such that α+ 2β + 2γ + 2δ = 1, and

|G(x, y, h(t))−G(x, y, k(t))| ≤ M(h(t), k(t)), (20)

for every (x, y) ∈W ×D, h, k ∈ B(W ) and t ∈W , where

M(h(t), k(t)) = α |h(t)− k(t)|+ β
{
|h(t)− T (h(t))|+ |k(t)− T (k(t))|

}
+γ
{
|h(t)− T (k(t))|+ |k(t)− T (h(t))|

}
+δ
{
max{|h(t)− T (k(t))|, |k(t)− T (h(t))|}

+hmin{|h(t)− T (k(t))|, |k(t)− T (h(t))|}
}

then the functional equation (18) has a unique bounded solution in B(W ).

Proof. Let ε > 0 be an arbitrary, and h, k ∈ B(W ). Then for x ∈W , we can choose y1, y2 ∈ D so that

T (h(x)) < g(x, y1) +G(x, y1, h(τ(x, y1))) + ε, (21)

T (k(x)) < g(x, y2) +G(x, y2, k(τ(x, y2))) + ε. (22)

Also from (19),
T (h(x)) ≥ g(x, y2) +G(x, y2, h(τ(x, y2))), (23)

T (k(x)) ≥ g(x, y1) +G(x, y1, k(τ(x, y1))). (24)

If the inequality (20) holds, from inequalities (21) and (24) we have

T (h(x))− T (k(x)) < G(x, y1, h(τ(x, y1)))−G(x, y1, k(τ(x, y1))) + ε
≤ |G(x, y1, h(τ(x, y1)))−G(x, y1, k(τ(x, y1)))|+ ε
≤ M(h(x), k(x)) + ε. (25)

Similarly from (22) and (23), we obatin

T (k(x))− T (h(x)) ≤M(h(x), k(x)) + ε. (26)
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From (25) and (26), we establish

|T (h(x))− T (k(x))| ≤M(h(x), k(x)) + ε,

for each x ∈W , and for arbitrary ε > 0.
Thus, dB(T (h), T (k)) ≤M(h, k), where α, δ > 0, β, γ ≥ 0 such that α+2β+2γ+2δ = 1. Moreover, the

conditions of Theorem 1 are satisfied for the mapping T . Hence, the functional equation (18) has a unique
bounded solution.
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