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Abstract

The authors present some new criteria for the oscillation of all solutions to a class of second-order
differential equations with sublinear neutral terms. The results established are new and extend those
reported in the literature. Examples are included to demonstrate the importance and novelty of the
presented results.

1 Introduction

In this article, we deal with the oscillatory properties of second-order differential equations with sublinear
neutral terms of the form

(b(t)(w′(t))δ)′ + f(t)uβ(θ(t)) = 0, (1)

where t ≥ t0 > 0, w(t) = u(t)+
∑m
i=1 giu

αi(t−ηi), δ and β are the ratios of odd positive integers. Throughout
this paper, we assume that:

(B1) θ ∈ C([t0,∞),R), θ(t) ≤ t with limt→∞ θ(t) =∞;

(B2) gi and ηi are positive constants for i = 1, 2, ...,m;

(B3) b ∈ C([t0,∞),R+), f ∈ C([t0,∞),R), f(t) ≥ 0 for all t ≥ t0 > 0 and f(t) is not identically zero in any
interval [d,∞);

(B4) limt→∞B(t) =∞, where B(t) =
∫ t
t0
b−1/δ(s)ds;

(B5) αi are the quotients of odd positive integers with 0 < αi < 1 for i = 1, 2, ...,m, and

m∑
i=1

(
αi + (1− αi)g

1
1−αi
i

)
< 1.

By a solution of equation (1), we mean a function u ∈ C([Tu,∞),R) for some Tu ≥ t0 such that
b(w′)δ ∈ C1([Tu,∞),R) and u satisfies equation (1) on [Tu,∞). We consider only those solutions u of
equation (1) which satisfy sup{|u(t)| : t ≥ T} > 0 for any T ≥ Tu, and assume that equation (1) possesses
such solutions. A solution of (1) is said to be oscillatory if it has infinitely many zeros on [Tu,∞) and
otherwise, it is said to be nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are
oscillatory.
Neutral differential equations are differential equations in which the highest-order derivative of the un-

known function is evaluated both at the present state t and at one or more past or future states. Besides
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their theoretical interest, such equations have numerous applications in natural sciences and technology;
for example, see the monographs [13, 14]. Therefore, there has been great interest in obtaining conditions
for the oscillation and other asymptotic properties of such equations. So in the past several years, many
oscillatory results have been established for second-order differential equations of neutral type; for example,
see [1, 4, 5, 8, 10, 16, 17, 18, 21, 24].
In recent years the authors studied the oscillatory behavior of the following equation

(b(t)(w′(t))δ)′ + f(t)uβ(θ(t)) = 0, t ≥ t0, (2)

where w(t) = u(t) +
∑m
i=1 gi(t)u

αi(η(t)) in [3, 6, 20, 25] for i = 1, 2, ...,m, and in [2, 7, 9, 11, 12, 19, 22, 23]
in the case m = 1. In all these results it is required implicitly or explicitly that limt→∞ gi(t) = 0 for
i = 1, 2, ...,m, and thus the results obtained in these papers are not applicable when gi(t) for i = 1, 2, ...,m
is a constant. This observation motivated us to find new criteria for the oscillation of equation (1) where
we have constants gi ∈ (0, 1) for i = 1, 2, ...,m instead of functions gi(t) → 0 as t → ∞ for i = 1, 2, ...,m.
Thus, the results obtained in this paper are new and applicable to new classes of differential equations with
sublinear neutral terms. Examples are provided to show the importance and novelty of our main results.

2 Main Results

In this section, we obtain suffi cient conditions for the oscillation of all solutions of (1). Without loss of
generality, we deal only with positive solutions of (1); since if u(t) is a solution of (1), then −u(t) is also a
solution. We start with the following lemmas.

Lemma 1 (See [3, Lemma 2.1]) If a and b are positive and 0 < α ≤ 1, then

aαb1−α ≤ αa+ (1− α)b, (3)

where equality holds if and only if a = b.

Lemma 2 (See [13, Lemma 1.5.1]) Let h, g ∈ C([t0,∞),R) and h(t) = g(t)+pg(t−c), t ≥ t0+max{0, c},
where p 6= 1 and c are constants. Assume that there exists a constant l ∈ R such that limt→∞ h(t) = l.

(S1) If lim inft→∞ g(t) = g∗ ∈ R, then g∗ = l
(1+p) ;

(S2) If lim supt→∞ g(t) = g∗ ∈ R, then g∗ = l
(1+p) .

Lemma 3 Let u(t) be a positive solution of (1). If∫ ∞
t0

(
1

b(t)

∫ ∞
t

f(s)ds

)1/δ
dt =∞, (4)

then the corresponding function w satisfies

(i) w(t) > 0, w′(t) > 0 and (b(t)(w′(t))δ)′ ≤ 0 for t ≥ t1 for some t1 ≥ t0;

(ii) w(t)
B(t) is decreasing for t ≥ t1;

(iii) w(t) ≥ B(t)b1/δ(t)w′(t) for t ≥ t1;

(iv) w(t)→∞ as t→∞.
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Proof. Let u(t) be a positive solution of (1), say u(t) > 0, u(θ(t)) > 0, and u(t− ηi) > 0 for i = 1, 2, ...,m
for all t ≥ t1 for some t1 ≥ t0. From (1) and (B4), it follows that case (i) holds true, which implies

w(t) ≥ B(t)b1/δ(t)w′(t) for t ≥ t1,

and hence w(t)/B(t) is a decreasing function for t ≥ t1. Next, we claim that (4) implies that w(t) → ∞ as
t→∞. Since w(t) is a positive increasing function, there exists a constant M > 0 such that

lim
t→∞

w(t) =M > 0. (5)

Let lim inft→∞ u(t) = c. Then using Lemma 2, we obtain

M = c+

m∑
i=1

gic
αi . (6)

Since gi > 0 for i = 1, 2, ...,m, we see that c > 0. If not, c = 0, then (6) implies M = 0, which contradicts
(5). Hence there exists t2 ≥ t1 such that

u(θ(t)) ≥ c

2
for t ≥ t2.

Using this in (1), we obtain

(b(t)(w′(t))δ)′ +
( c
2

)β
f(t) ≤ 0.

Integrating the last inequality from t to ∞ gives

w′(t) ≥
( c
2

)β/δ ( 1

b(t)

∫ ∞
t

f(s)ds

)1/δ
.

Integrating the above inequality from t2 to t yields

w(t) ≥ w(t2) +
( c
2

)β/δ ∫ t

t2

(
1

b(s)

∫ ∞
s

f(x)dx

)1/δ
ds,

which in view of (4) implies that w(t)→∞ as t→∞. The proof is now completed.

Lemma 4 Let u(t) be a positive solution of (1) and (4) holds. Then

u(t) ≥ gw(t) (7)

for t ≥ t1 for some t1 ≥ t0, where

g =

[
1−

m∑
i=1

(
αi + (1− αi)g1/(1−αi)i

)]
> 0.

Proof. Let u(t) be a positive solution of (1), say u(t) > 0, u(θ(t)) > 0, and u(t− ηi) > 0 for i = 1, 2, ...,m
for all t ≥ t1 for some t1 ≥ t0. Then w(t) > 0 for t ≥ t1 and from Lemma 3(iv), we see that w(t) → ∞ as
t→∞. Then there exists t2 ≥ t1 such that

w(t) ≥ 1 for t ≥ t2. (8)

From the definition of w(t) and the fact that w(t) is increasing, we see that

u(t) = w(t)−
m∑
i=1

giu
αi(t− ηi) ≥ w(t)−

m∑
i=1

wαi(t)
(
g
1/(1−αi)
i

)1−αi
.
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Now using (3) and (8), we obtain

u(t) ≥ w(t)−
m∑
i=1

(
αiw(t) + (1− αi)g1/(1−αi)i w(t)

)
=

[
1−

m∑
i=1

(
αi + (1− αi)g1/(1−αi)i

)]
w(t).

Hence,
u(t) ≥ gw(t) for t ≥ t2. (9)

This completes the proof.

Lemma 5 Let u(t) be a positive solution of (1). If (4) and∫ ∞
t0

f(t)Bβ(θ(t))dt =∞ (10)

hold, then

lim
t→∞

w(t)

B(t)
= 0. (11)

Proof. Proceeding as in the proof of Lemma 4, we again arrive at (9) for t ≥ t2. Using (9) in (1), we obtain

(b(t)(w′(t))δ)′ + gβf(t)wβ(θ(t)) ≤ 0, t ≥ t2. (12)

Since w(t)/B(t) is positive and decreasing (see Lemma 3(ii)), there exists a constant l such that limt→∞
w(t)
B(t) =

l ≥ 0. Assume on the contrary that l > 0. Then w(t)/B(t) ≥ l for t ≥ t2. Using this in (12) and then
integrating the resulting inequality from t2 to t, we obtain

b(t2)(w
′(t2))

δ ≥ lβgβ
∫ t

t2

f(s)Bβ(θ(s))ds,

which contradicts (10) for t→∞, and so limt→∞ w(t)
B(t) = 0. The proof is completed.

Theorem 1 Let (B1)—(B5) and (4) hold and let β = δ. If

lim inf
t→∞

∫ t

θ(t)

f(s)Bβ(θ(s))ds >
1

gβe
, (13)

then equation (1) is oscillatory.

Proof. Let u(t) be a nonoscillatory solution of equation (1), say u(t) > 0, u(θ(t)) > 0, and u(t− ηi) > 0 for
i = 1, 2, ...,m for all t ≥ t1 for some t1 ≥ t0. Applying Lemmas 3 and 4, we conclude that Lemma 3(iii) and
(9) hold for t ≥ t2, respectively. Using (9) in (1) gives

(b(t)(w′(t))δ)′ + gβf(t)wβ(θ(t)) ≤ 0, t ≥ t2. (14)

From Lemma 3(iii), we have

wβ(θ(t)) ≥ Bβ(θ(t))
[
b(θ(t))(w′(θ(t)))δ

]β/δ
.

Using this in (14) and letting X(t) = b(t)(w′(t))δ, we see that X(t) is a positive solution of the differential
inequality

X ′(t) + gβf(t)Bβ(θ(t))X(θ(t)) ≤ 0, (15)

but this contradicts Theorem 2.1.1 in [16], according to which condition (13) ensures that (15) has no positive
solution. The proof is complete.
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Theorem 2 Let δ > 1, (B1)—(B5) and (4) hold. Then equation (1) is oscillatory provided that

(b
1
δ (t)w′(t))′ +

gβ

δ
f(t)Bδ−1(θ(t))wβ+1−δ(θ(t)) = 0 (16)

is oscillatory.

Proof. Let u(t) be a nonoscillatory solution of equation (1), say u(t) > 0, u(θ(t)) > 0, and u(t− ηi) > 0 for
i = 1, 2, ...,m for all t ≥ t1 for some t1 ≥ t0. Proceeding as in Theorem 1, we see that Lemma 3(iii) and (14)
hold for t ≥ t2. It is easy to see that

(b(t)(w′(t))δ)′ =
(
(b

1
δ (t)w′(t))δ

)′
= δ

(
b
1
δ (t)w′(t)

)δ−1 (
b
1
δ (t)w′(t)

)′
.

Using the above relation in (14), we obtain

(b
1
δ (t)w′(t))′ +

gβ

δ
(b

1
δ (t)w′(t))1−δf(t)wβ(θ(t)) ≤ 0. (17)

For δ > 1, Lemma 3(iii) yields

w1−δ(t) ≤
(
b
1
δ (t)w′(t)

)1−δ
B1−δ(t),

hence (
b
1
δ (t)w′(t)

)1−δ
≥
(
w(t)

B(t)

)1−δ
. (18)

Since w(t)/B(t) is decreasing and θ(t) ≤ t, we get(
w(t)

B(t)

)1−δ
≥
(
w(θ(t))

B(θ(t))

)1−δ
. (19)

Substituting (19) into (18) yields

(
b
1
δ (t)w′(t)

)1−δ
≥
(
w(θ(t))

B(θ(t))

)1−δ
.

Using this in (17), we see that w(t) is a positive solution of the differential inequality

(b
1
δ (t)w′(t))′ +

gβ

δ
f(t)Bδ−1(θ(t))wβ+1−δ(θ(t)) ≤ 0, t ≥ t2. (20)

It follows from [15, Corollary 1] that the delay differential equation (16) corresponding to (20) has also a
positive solution, but this contradicts our assumption on Eq. (16). This completes the proof.

We denote

F (t) =

[∫ ∞
t

f(s)ds

](1−δ)/δ
.

Theorem 3 Let 0 < δ < 1, (B1)—(B5), (4) and (10) hold and let θ
′(t) ≥ 0. Then equation (1) is oscillatory

provided that

(b
1
δ (t)w′(t))′ +

g
β
δ

δ
F (t)f(t)w

β
δ (θ(t)) = 0 (21)

is oscillatory.
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Proof. Assume on the contrary that u(t) is a positive solution of (1). From Lemmas 4 and 5, we see that
(9) and (11) hold, respectively. Now note that (11) implies

lim
t→∞

b
1
δ (t)w′(t) = 0.

Therefore an integration of (1) yields

b
1
δ (t)w′(t) =

[∫ ∞
t

f(s)uβ(θ(s))ds

]1/δ
. (22)

Differentiating (22) leads to the equation

(b
1
δ (t)w′(t))′ +

1

δ

[∫ ∞
t

f(s)uβ(θ(s))ds

] 1−δ
δ

f(t)uβ(θ(t)) = 0.

Using (9) in the above equation yields

(b
1
δ (t)w′(t))′ +

gβ

δ

[
gβ
∫ ∞
t

f(s)wβ(θ(s))ds

] 1−δ
δ

f(t)wβ(θ(t)) ≤ 0.

Employing w(t) is an increasing function, we see that w(t) is a positive solution of the differential inequality

(b
1
δ (t)w′(t))′ +

g
β
δ

δ
F (t)f(t)w

β
δ (θ(t)) ≤ 0. (23)

It follows from [15, Corollary 1] that the delay differential equation (21) corresponding to (23) has also a
positive solution, but this contradicts our assumption on Eq. (21). This completes the proof.

In the following, we obtain explicit criteria for the oscillation of (1) for different values of δ and β.

Theorem 4 Let β = δ > 1, (B1)—(B5) and (4) hold and let θ
′(t) ≥ 0. If

lim sup
t→∞

{
1

B(θ(t))

∫ θ(t)

t0

f(s)B(s)Bδ(θ(s))ds+

∫ t

θ(t)

f(s)Bδ(θ(s))ds

+B(θ(t))

∫ ∞
t

f(s)Bδ−1(θ(s))ds

}
>

δ

gβ
, (24)

then equation (1) is oscillatory.

Proof. Let u(t) be a nonoscillatory solution of equation (1), say u(t) > 0, u(θ(t)) > 0, and u(t− ηi) > 0 for
i = 1, 2, ...,m for all t ≥ t1 for some t1 ≥ t0. Proceeding as in Theorem 2, we see that (20) holds for t ≥ t2.
Integrating (20) from t to ∞ yields

w′(t) ≥ gβ

δb
1
δ (t)

∫ ∞
t

f(s)Bδ−1(θ(s))w(θ(s))ds.

Integrating this inequality from t2 to t yields

w(t) ≥ gβ

δ

∫ t

t2

1

b
1
δ (s)

∫ ∞
s

f(j)Bδ−1(θ(j))w(θ(j))djds

=
gβ

δ

[∫ t

t2

1

b
1
δ (s)

∫ t

s

f(j)Bδ−1(θ(j))w(θ(j))djds

+

∫ t

t2

1

b
1
δ (s)

∫ ∞
t

f(j)Bδ−1(θ(j))w(θ(j))djds

]
.
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Changing the order of integration, we obtain

w(t) ≥ gβ

δ

[∫ t

t2

f(s)B(s)Bδ−1(θ(s))w(θ(s))ds+B(t)

∫ ∞
t

f(s)Bδ−1(θ(s))w(θ(s))ds

]
.

Thus,

w(θ(t)) ≥ gβ

δ

[∫ θ(t)

t2

f(s)B(s)Bδ−1(θ(s))w(θ(s))ds+B(θ(t))

∫ t

θ(t)

f(s)Bδ−1(θ(s))w(θ(s))ds

+B(θ(t))

∫ ∞
t

f(s)Bδ−1(θ(s))w(θ(s))ds

]
.

Applying the fact that w(t)/B(t) is decreasing and w(t) is increasing, the previous inequality implies

w(θ(t)) ≥ gβ

δ

w(θ(t))

B(θ(t))

∫ θ(t)

t2

f(s)B(s)Bδ(θ(s))ds+
gβ

δ
w(θ(t))

∫ t

θ(t)

f(s)Bδ(θ(s))ds

+
gβ

δ
B(θ(t))w(θ(t))

∫ ∞
t

f(s)Bδ−1(θ(s))ds.

After simplification, one can see that{
1

B(θ(t))

∫ θ(t)

t2

f(s)B(s)Bδ(θ(s))ds+

∫ t

θ(t)

f(s)Bδ(θ(s))ds

+B(θ(t))

∫ ∞
t

f(s)Bδ−1(θ(s))ds

}
≤ δ

gβ
,

which is a contradiction. This completes the proof.

Theorem 5 Let β = δ < 1, (B1)—(B5), (4) and (10) hold and let θ
′(t) ≥ 0. If

lim sup
t→∞

{
1

B(θ(t))

∫ θ(t)

t0

F (s)f(s)B(s)B(θ(s))ds+B(θ(t))

∫ t

θ(t)

F (s)f(s)
B(θ(s))

B(s)
ds

+B(θ(t))

∫ ∞
t

F (s)f(s)ds

}
>
δ

g
, (25)

then equation (1) is oscillatory.

Proof. Let u(t) be a nonoscillatory solution of equation (1), say u(t) > 0, u(θ(t)) > 0, and u(t− ηi) > 0 for
i = 1, 2, ...,m for all t ≥ t1 for some t1 ≥ t0. Proceeding as in Theorem 3, we see that (23) holds for t ≥ t2.
Integrating (23) from t to ∞ yields,

w′(t) ≥ g

δ

1

b
1
δ (t)

∫ ∞
t

F (s)f(s)w(θ(s))ds.

Integrating this inequality from t2 to t yields

w(t) ≥ g

δ

∫ t

t2

1

b
1
δ (s)

∫ ∞
s

F (j)f(j)w(θ(j))djds

=
g

δ

∫ t

t2

1

b
1
δ (s)

∫ t

s

F (j)f(j)w(θ(j))djds

+
g

δ

∫ t

t2

1

b
1
δ (s)

∫ ∞
t

F (j)f(j)w(θ(j))djds.
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Hence

w(t) ≥ g

δ

∫ t

t2

B(s)F (s)f(s)w(θ(s))ds+
g

δ
B(t)

∫ ∞
t

F (s)f(s)w(θ(s))ds,

and so

w(θ(t)) ≥ g

δ

∫ θ(t)

t2

B(s)F (s)f(s)w(θ(s))ds+
g

δ
B(θ(t))

∫ t

θ(t)

F (s)f(s)w(θ(s))ds

+
g

δ
B(θ(t))

∫ ∞
t

F (s)f(s)w(θ(s))ds.

Since w(t)/B(t) is decreasing and w(t) is increasing, the last inequality implies{
1

B(θ(t))

∫ θ(t)

t2

F (s)f(s)B(s)B(θ(s))ds+B(θ(t))

∫ t

θ(t)

F (s)f(s)
B(θ(s))

B(s)
ds

+B(θ(t))

∫ ∞
t

F (s)f(s)ds

}
≤ δ

g
.

This is a contradiction and the proof is completed.

Theorem 6 Let δ > 1 and β > δ be hold. Moreover, assume that (B1)—(B5) and (4) are satisfied. If∫ ∞
t0

f(t)Bδ−1(θ(t))dt =∞, (26)

then (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2, we again arrive at (20) for t ≥ t2. Since w(t) is increasing,
there exists a constant M > 0 such that w(t) ≥ M , and so wβ−δ+1(t) ≥ Mβ−δ+1 for t ≥ t2. Using this in
(20) gives

(b
1
δ (t)w′(t))′ +

gβ

δ
Mβ−δ+1f(t)Bδ−1(θ(t)) ≤ 0 for t ≥ t2.

Integrating the last inequality from t2 to t yields

gβ

δ
Mβ−δ+1

∫ t

t2

f(s)Bδ−1(θ(s))ds ≤ b 1δ (t2)w′(t2) <∞ as t→∞,

which contradicts (26). This completes the proof.

Theorem 7 Let δ > 1 and β < δ be hold. Moreover, assume that (B1)—(B5) and (4) are satisfied. If∫ ∞
t0

f(t)Bβ−1(θ(t))dt =∞, (27)

then (1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2, we again arrive at (20) for t ≥ t2. Since w(t)/B(t) is
decreasing, there exists a constant K > 0 such that wβ−δ(t) ≥ Kβ−δBβ−δ(t) for t ≥ t2. Using this in (20),
we obtain

(b
1
δ (t)w′(t))′ +

gβ

δ
Kβ−δf(t)Bβ−1(θ(t))w(θ(t)) ≤ 0, t ≥ t2. (28)

Since w(t) is increasing there exists a constant M > 0 such that w(t) ≥M for t ≥ t2. Using this in (28) and
then integrating from t2 to t, we see that

gβ

δ
Kβ−δM

∫ t

t2

f(s)Bβ−1(θ(s))ds ≤ b 1δ (t2)w′(t2) <∞ as t→∞,

which contradicts (27). This completes the proof of the theorem.
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3 Examples

In this section, we present three examples to show effectiveness and feasibility of the main results.

Example 1 Consider the following differential equation with a couple of sublinear neutral terms(
t
1
2

(
u(t) +

1

4
u
1
3 (t− 1) + 1

16
u
1
5

(
t− 1

2

))′)′
+

a

t
3
2

u

(
t

2

)
= 0, t ≥ 1. (29)

Here b(t) = t
1
2 , f(t) = a/t3/2 with a > 0, g1 = 1/4, g2 = 1/16, α1 = 1/3, α2 = 1/5, η1 = 1, η2 = 1/2,

θ(t) = t/2, and β = δ = 1. A simple calculation shows that g = 43/120, and B(t) = 2(
√
t− 1). It is easy to

see that (B1)—(B5) are satisfied. Condition (4) becomes∫ ∞
1

(
1√
t

∫ ∞
t

a

s
3
2

ds

)
dt = 2a

∫ ∞
1

1

t
dt =∞,

i.e., condition (4) is satisfied. Also condition (13) becomes

lim inf
t→∞

∫ t

t/2

2a

s
3
2

(√
s

2
− 1
)
ds = lim inf

t→∞

∫ t

t/2

(√
2a

s
− 2a
s
3
2

)
ds =

√
2a log 2,

and so condition (13) is satisfied if a > 1.0473. Hence, by Theorem 1, equation (29) is oscillatory if
a > 1.0473.

Example 2 Consider the following second-order differential equation with a couple of sublinear neutral terms(
t (w′(t))

3
)′
+
a

t2
u5
(
t

2

)
= 0, t ≥ 1, (30)

where w(t) = u(t) + 1
4u

1/3(t− 1) + 1
16u

1/5(t− 2) and a > 0 is a constant.
Here b(t) = t, f(t) = a/t2 with a > 0, g1 = 1/4, g2 = 1/16, α1 = 1/3, α2 = 1/5, δ = 3, β = 5, η1 = 1,

η2 = 2, and θ(t) = t/2. It is easy to see that (B1)—(B5) are satisfied. Condition (4) becomes∫ ∞
1

(
1

t

∫ ∞
t

a

s2
ds

) 1
3

dt =

∫ ∞
1

a
1
3

t
2
3

dt =∞,

i.e., condition (4) is satisfied. Since B(t) = 3
2 (t

2/3 − 1), condition (26) becomes

9a

4

∫ ∞
1

1

t2

(
t2/3

22/3
− 1
)2

dt =∞,

i.e., condition (26) is satisfied. Therefore, by Theorem 6, equation (30) is oscillatory.

Example 3 Consider the second-order differential equation with two sublinear neutral terms(
1

t
(w′(t))

1
3

)′
+
1

t2
u
1
3

(
t

2

)
= 0, t ≥ 1, (31)

where w(t) = u(t) + 1
28/5

u1/5(t− 1) + 1
212/7

u1/7(t− 2).
Here b(t) = 1/t, f(t) = 1/t2, β = δ = 1/3, η1 = 1, η2 = 2, α1 = 1/5, α2 = 1/7, θ(t) = t/2, g1 = 1/28/5,

and g2 = 1/212/7. As in Examples 1 and 2, it is easy to show that all conditions of Theorem 5 hold, and so
equation (31) is oscillatory.
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4 Conclusion

In this paper, we have obtained some new criteria for the oscillation of (1). Our criteria are new in the sense
that almost all the results already established for (1) required that gi(t) → 0 as t → ∞ for i = 1, 2, ...,m,
but we assume that gi(t) = gi ∈ (0, 1) for i = 1, 2, ...,m. Therefore the oscillation criteria already known in
the literature cannot be applied to our examples.
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