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Abstract

The addition of graphs is a well-studied operation on graphs which results in a new graph with more

number of vertices and edges. The operation of adding vertices to graphs is different from the addition

of graphs but also defines a new graph with more number of vertices and edges. In this article, the

above two operations are extended to a generalization of graphs called semigraphs. The article also deals

with the rank of a special incidence matrix of semigraphs resulting by the application of the above two

operations.

1 Introduction

It is convenient to be able to express ‘a given structure’ in terms of smaller and simpler structures, which
is possible only when we know the building blocks of the given structure. In graph theory many operations
are defined which give raise to new graphs from the given graphs and the properties of new graphs in terms
of their generators are studied. In this article, we extend some operations existing in the theory of graphs
to semigraphs, a generalization of graphs.

The incidence matrix of a semigraph, as defined by E. Sampathkumar [9], does not represent the sem-
igraph uniquely. Deshpande et al. [9], came up with a new definition of the incidence matrix of a sem-
igraph, which represents the semigraph uniquely, but does not reveal the fact that (v1, v2, . . . , vn) and
(vn, vn−1, . . . , v1) represent the same edge in a semigraph.

Authors in [10] make use of a property of binomial coefficient while defining the binomial incidence
matrix, which not only represents a semigraph uniquely but also has the following property. The (i, j) entry
of the matrix gives information about position of every vertex vi incident on ej from either end vertex on
the edge ej and also the size of the edge ej .

2 Preliminaries

In this section, we give basics of semigraph [9] and readers are referred to [5] for all the elementary notations
and definitions not described but used in this article.

Definition 1 A semigraph G is a pair (V, E) where V is a nonempty set whose elements are called vertices
of G, and E is a set of k-tuples of distinct vertices, called edges of G, for various k ≥ 2, satisfying the
following conditions.

1. Any two edges of G can have at most one vertex in common.
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2. Two edges (a1, a2, ..., ap) and (b1, b2, ..., bq) are said to be equal if and only if

• p = q and

• either ai = bi for 1 ≤ i ≤ p or ai = bp−i+1 for 1 ≤ i ≤ p.

Note 1 Let E be the set of vertices on the edge e. Then the size of E is called the size of the edge e and it
is usually denoted by |E|.

Let G = (V, E) be a semigraph and let e = (u1, u2, . . . , uk) be an edge of G. Then u1 and uk are called
the end vertices and ui, 2 ≤ i ≤ k−1, are called the mid vertices of e. Two vertices of G are adjacent if there
is an edge containing both of them. An edge is said to be incident on every vertex on it. Two edges of G are
adjacent if they have a vertex in common. Two vertices are consecutively adjacent if they are consecutive
on the edge containing them. In a semigraph, an edge of size at least three is known as semiedge.

Like a graph, a semigraph G also has a geometric representation on plane. Vertices of G are represented
either by dots or by small circles according to whether they are end vertices or mid vertices of the edge
containing them and edges of G by curves passing through all the vertices on them. When a mid vertex v of
an edge e1 is an end vertex of another edge, say e2, then a small tangent is drawn to the circle representing
vertex v where e2 meets v. A semigraph G and its representation are given in Example 1.

Example 1 Let G = (V, E) be a semigraph with V (G) = {u1, u2, . . . , u8} and

E(G) = {e1 = (u1, u2, u3); e2 = (u3, u4, u5); e3 = (u2, u8); e4 = (u5, u6, u7, u8)}.

It can be represented as shown in Figure 1, and the edges e1, e2 and e4 are semiedges.
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Figure 1: Semigraph G with 8 vertices and 4 edges

Definition 2 A subedge of an edge e = (a1, a2, . . . , am) is a p-tuple e′ = (ai1 , ai2 , . . . , aip
), induced by the

vertices ai1 , ai2, . . . , aip
, where 1 ≤ i1 < i2 < . . . < ip ≤ m or 1 ≤ ip < ip−1 < . . . < i1 ≤ m. A partial edge

of e is a k-tuple e′(ai, ak) = (ai, ai+1, . . . , ai+k−1), where 1 ≤ i ≤ m − k + 1. Here two consecutive vertices
in e

′

are also consecutive vertices in e. Note that an edge is a subedge (partial edge) of itself, but a subedge
(partial edge) is not an edge of G.

Definition 3 A complete semigraph is a semigraph in which every two vertices are adjacent. In addition,
if every vertex is an end vertex of some edge then it is called a strongly complete semigraph. For example, a
semigraph which consists of a single edge of size n ≥ 3 is complete but not strongly complete and is denoted
by Ec

n. The strongly complete semigraph on n vertices with one edge of size (n − 1) and all other edges of
size two is denoted by T 1

n−1.

Definition 4 A semigraph G is said to be a zig-zag semigraph if V (G) = {u1, u2, . . . , uk, uk+2, . . . , u2k−1}
and

E(G) = {(u1, u2, . . . , uk), (u1, uk+1), (u2, uk+1), (u2, uk+2), . . . , (uk−1, u2k−2), (uk−1, u2k−1), (uk, u2k−1)},

denoted by Zk−1

k .
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Definition 5 A semigraph G′ = (V ′, E′) is a subsemigraph of a semigraph G = (V, E) if V ′ ⊆ V and
E′ ⊆ E.

Definition 6 Let G1 and G2 be two graphs with disjoint vertex sets V1 and V2 and edge sets E1 and E2,
respectively. Their union denoted by G1 ∪ G2 has vertex set V = V1 ∪ V2 and edge set E = E1 ∪ E2. Their
join (addition) denoted by G1 + G2 consists of G = G1 ∪ G2 and all edges joining V1 with V2.

Now we define the binomial incidence matrix of a semigraph.

Definition 7 ([10]) Let G = (V, E) be a semigraph with V (G) = {u1, u2, . . . , un} and E(G) = {e1, e2, . . . , em}.
Let size of the edge ej be nj + 1, 1 ≤ j ≤ m. The binomial incidence matrix of G, denoted by B(G), is a
n × m matrix, whose rows are indexed by the vertex set and columns are indexed by the edge set of G. The
column corresponding to ej in the binomial incidence matrix consists of entries 0, njC0, . . . ,

njCnj
, where

nonzero entries correspond to the vertices on the edge. The entries njC0 and nj Cnj
correspond to the end

vertices of the edge ej . The (i, j) entry of B(G) is given by

bij =











nj Cr
if vertex ui and edge ej are incident and ui is the rth vertex

from the end vertex of ej with entry njC0, 0 ≤ r ≤ nj

0 if vertex ui and edge ej are not incident on each other.

Example 2 The binomial incidence matrix B(G) of semigraph G as shown in Figure 1 is given by

B(G) =

























e1 e2 e3 e4

u1
2C0 0 0 0

u2
2C1 0 1C0 0

u3
2C2

2C0 0 0
u4 0 2C1 0 0
u5 0 2C2 0 3C0

u6 0 0 0 3C1

u7 0 0 0 3C2

u8 0 0 1C1
3C3

























.

We refer the interested readers to the articles [2, 3, 4, 6, 7, 8] for the other important studies in semigraphs.

3 Number of Subedges and Number of Partial Edges in a Semi-

graph

The semigraph Ec
n, n ≥ 3 seems to be the simplest semigraph which is not a graph.

Example 3 The semigraph Ec
3 is as shown in Figure 2. Subedges of the semigraph G are (v1, v2, v3), (v1, v2),

1 2 3
v vv

Figure 2: Semigraph G = Ec
3

(v1, v3) and (v2, v3) out of which (v1, v2, v3), (v1, v2), and (v2, v3), are partial edges.

It is quite interesting to count the number of subedges and the number of partial edges in a given
semigraph and the task can be simplified by knowing the number of subedges and partial edges in an edge
of size n.
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Theorem 1 The number of subedges in an edge of size n is given by 2n − n − 1 and that of partial edges is
nC2.

Proof. Let e = (v1, v2, . . . , vn) be an edge of size n. With v1 as starting vertex, we have (n − 1) partial
edges namely [(v1, v2), (v1, v2, v3) . . . (v1, v2, . . . , vn)]. Similarly, with v2 as starting vertex there are (n − 2)
partial edges.

Finally, with vn−1 as starting vertex, we have one partial edge. Hence, number of partial edges in e is,

1 + 2 + 3 + . . . + n − 1 =
n(n − 1)

2
.

With v1 as starting vertex, there are n−1C1 subedges of size 2 namely [(v1, v2), (v1, v3) . . . (v1, vn)]. From
v1 there are n−1C2 subedges of size 3 and so on. With v1 as starting vertex there is one subedge of size n.
Hence the total number of subedges in e with v1 as starting vertex is,

n−1C1 + n−1C2 + . . . + n−1Cn−1 = 2n−1 − 1.

Out of 2n−1 − 1 subedges with v1 as starting vertex, there are (n − 1) partial edges.
Similarly, with v2 as starting vertex, there are 2n−2 − 1 subedges in e, out of which (n − 2) are partial

edges and so on. With vn−1 as starting vertex, there is only one subedge which is also a partial edge. Hence,
total number of subedges in the edge e which is of size n is,

(2n−1 − 1) + (2n−2 − 1) + . . . + (21 − 1) = 2n − n − 1.

Corollary 1 The number of subedges of size 2, in an edge of size n is given by nC2 and that of partial edges
of size 2, is n − 1.

Proof. Let e = (v1, v2, . . . , vn) be an edge of size n. With v1 as starting vertex, there are n−1C1 subedges
of size 2, out of which (v1, v2) is a partial edge.
From v2, there are n−2C1 subedges of size 2, out of which (v2, v3) is a partial edge.
...
With vn−1 as starting vertex, there is only one subedge of size 2, which is also a partial edge. Hence, total
subedges of size 2 in the edge e of size n is,

1 + 2 + . . . + n−2C1 + n−1C1 =n C2

Each vertex with its immediate next vertex forms a partial edge each of size 2. Those are (v1, v2), (v2, v3),
. . ., (vn−1, vn). Hence total partial edges of size 2 are, n − 1.

4 Addition of a Complete Graph and Path Graph to Semigraph

In this section, we discuss about adding a complete graph and path graph to semigraphs. We have also
explored the rank of the binomial incidence matrix of the resulting semigraphs.

Definition 8 T
Kn−r
r is a complete semigraph on n vertices which contains a semiedge of size r ≥ 3 and a

complete graph Kn−r as subsemigraphs, all the vertices of Kn−r are made adjacent to all the vertices on the

semiedge by edges of size two. Clearly, number of edges in T
Kn−r
r is given by 1 + n−rC2 + (n − r)r.

Example 4 The semigraph TK4

3 as shown in Figure 3 is a complete semigraph on 7 vertices which contains
a semiedge of size 3 and a complete graph K4 as subsemigraphs.
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Figure 3: Semigraph TK4
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Figure 4: Semigraph TP4
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Definition 9 T
Pn−r
r is a semigraph on n vertices which contains a semiedge of size r ≥ 3 and a path graph

Pn−r as subsemigraphs, all the vertices of Pn−r are made adjacent to all the vertices on the semiedge by

edges of size two. Clearly, number of edges in T
Pn−r
r is given by (n − r)r + 1.

Example 5 The semigraph TP4

3 as shown in Figure 4 is a semigraph on 7 vertices which contains a semiedge
of size 3 and a path graph P4 as subsemigraphs.

Note 2 Clearly, T
Kn−r
r = Ec

r + Kn−r and T
Pn−r
r = Ec

r + Pn−r, when ′+′ represents addition of graphs.

We have the following theorem.

Theorem 2 Let H be any connected graph on (n−r) vertices and G be the semigraph given by G = Ec
r +H.

Then, rank of B(G) is n.

Proof. Let v1, v2, . . . , vr be vertices of Ec
r and vr+1 , vr+2, . . . , vn be the vertices of H . The first column of

B(G) has non zero entries r−1C0,
r−1C1, . . . ,

r−1Cr−1. Assume that they appear in that order in the first r
rows.

Suppose, X ∈ Rn be such that X′
B(G) = 0. Since, for every j with 1 ≤ j ≤ r, the vertex vj is adjacent

to vr+i, for all i, 1 ≤ i ≤ n − r, xj + xr+i = 0, i.e xj = −xr+i, 1 ≤ j ≤ r. We also have,

r−1C0 x1 +r−1 C1 x2 + . . . +r−1 Cr−1 xr = 0,

i.e − xr+i {r−1C0 +r−1 C1 + . . . +r−1 Cr−1} = 0

=⇒ xr+i = 0, ∀ i , 1 ≤ i ≤ n − r.

=⇒ xj = 0, ∀ j , 1 ≤ j ≤ r.

Thus X is the zero vector. The dimension of the left null space of B(G) is zero. Hence the result.

Corollary 2 Let H = Ec
n−r and G = Ec

r + H = Ec
r + Ec

n−r = TH
r is a complete semigraph on n vertices

with r(n − r) + 2 edges. Then rank B(TH
r ) = n.
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Proof. The proof follows from Theorem 2.

Note 3 1. If H = Kn−r then TH
r = T

Kn−r
r which is a complete semigraph on n vertices having 1 +

n−rC2 + (n − r)r edges.

2. If H is the complete semigraph with k edges, then TH
r = Ec

r + H has n vertices and 1 + r(n − r) + k
edges with the rank of B(TH

r ) equal to n.

3. Both the semigraphs T
Kn−r
r and T

Pn−r
r have the same rank n.

4. Generalizing Corollary 2, if r1, r2, . . . , rk are positive integers greater than or equal to 2 with r1 + r2 +
. . .+ rk = n, then G = Ec

r1
+ Ec

r2
+ . . . + Ec

rk
is a semigraph obtained by joining every vertex of Ec

rj
to

every vertex which is not on Ec
rj

, 1 ≤ j ≤ k. This results in a complete semigraph on n vertices and
(r1 × r2 × . . .× rk) + k edges with the rank of B(G) equal to n.

5 Rank of Binomial Incidence Matrix of a Semigraph after Addi-

tion of Vertices

In [1], Jean H. Bevis et al. have defined the addition of vertices to a given graph and discussed its effect on
the rank of the resulting graph. They have defined the following operations on an undirected graph H .

1. Let H be an undirected graph, u be a vertex of H and v be a vertex not in V (H). Then H1 = H ⊕u v
is the graph obtained by adding the vertex v and the edge between u and v, to H.

2. Let H be an undirected graph with V (H) = {u1, u2, . . . , un}, v be a vertex not in V (H) and X be a
0-1 vector with n components. Then H2 = H ⊕X v is the graph obtained by adding the vertex v and
making it adjacent with ui only if ith component of X is 1, 1 ≤ i ≤ n.

Motivated by the above, we have defined the following operations on semigraphs.
Let G be a semigraph with V (G) = {u1, u2, . . . , un}.

1. Let v /∈ V (G) and let X be a 0-1 vector with n components. Then G ⊕X v is the semigraph obtained
by adding vertex v to G and making it adjacent to ui by an edge of size 2, only if ith component of X
is 1, 1 ≤ i ≤ n.

If X = 1, a vector in which all components are equal to 1, then G ⊕X v = G ⊕1 v is the semigraph
obtained by making v adjacent to all vertices of G by the edges (ui, v) of size 2, ∀ i, 1 ≤ i ≤ n.

Example 6 The complete semigraph TK1

5 = [Ec
5 ⊕1 u6] is as shown in Figure 5.
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Figure 5: Complete semigraph TK1

5

Note 4 Let {u1, u2, . . . , un} be the set of vertices of the complete semigraph Ec
n and G = Ec

n⊕1un+1 =
Ec

n + K1 = TK1
n . Then from Theorem 2, B(G) is a full rank matrix.
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2. Let un+1, un+2, . . . , u2n−1 be vertices such that un+i /∈ V (G), ∀ i, 1 ≤ i ≤ n − 1. Then

[

G ⊕
′

{ui,ui+1}
un+i

]n−1

i=1

is a semigraph obtained by adding the edges of size 2 joining un+i and ui, i, 1 ≤ i ≤ n − 1.

Example 7 The Zig-zag semigraph, Z5
6 =

[

Ec
6 ⊕

′

{ui,ui+1}
un+i

]5

i=1

is as shown in Figure 6.
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Figure 6: Zig-zag semigraph Z5
6

Note 5 Let G = Ec
n be a semigraph with vertex set {u1, u2, . . . , un}, and

G
′

=
[

G ⊕
′

{ui,ui+1}
un+i

]n−1

i=1

= Zn−1
n .

Then B(G
′

) is a full rank matrix.

3. Let un+1, un+2, . . . , un+N be vertices such that un+i /∈ V (G), ∀ i, 1 ≤ i ≤ N . Then
[

G ⊕
′′

{u1,un}
un+i

]N

i=1

is a semigraph obtained by making the vertices un+1, un+2, . . . , un+N adjacent to both u1 and un by
edges of size 2.

Example 8 The semigraph, G
′

=
[

Ec
5 ⊕

′′

{u1,u5}
u5+i

]6

i=1

is as shown in Figure 7.
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Figure 7: Semigraph G
′

=
[

Ec
5 ⊕

′′

{u1,u5}
u5+i

]6

i=1

4. Let un+1, un+2, . . . , un+n be vertices of H = Ec
n such that un+i /∈ V (G), ∀ i, 1 ≤ i ≤ n. Then

[

G ⊕
′′′

ui
un+i

]n

i=1

is a semigraph obtained by making the vertices un+1, un+2, . . . , un+n adjacent to the

corresponding vertex of H by edges of size 2.
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=
[

Ec
4 ⊕

′′′

ui
un+i

]4

i=1

Example 9 The semigraph, G
′

=
[

Ec
4 ⊕

′′′

ui
un+i

]4

i=1

is as shown in Figure 8.

Theorem 3 Let G = Ec
n with V (G) = {u1, u2, . . . , un} and let G

′

=
[

G ⊕
′′

{u1,un} un+i

]N

i=1

where N is any

positive integer. Then rank of B(G
′

) is N + 2.

Proof. G
′

has n + N vertices u1, u2, . . . , un, un+1, un+2, . . . , un+N and 2N + 1 edges given by, e1 =
(u1, u2, . . . , un), ei+1 = (u1, un+i) and e

′

i+1 = (un, un+i), 1 ≤ i ≤ N .

Then, B(G
′

) is of the form





































e1 e2 e3 ... eN+1 e′2 e′3 ... e′N+1

u1
n−1C0 1 1 ... 1

u2
n−1C1 On−1×n−1 On−1×n−1

u3
n−1C2 On−1×n−1

. .

. .
un

n−1Cn−1 1 1 ... 1
un+1 0
un+2 0
. . IN×N IN×N

. .
un+N 0





































where IN×N is the identity matrix of order N and On−1×n−1 is the zero matrices of order n − 1.

One can easily observe that rank of B(G
′

) = N + 2.

Corollary 3 Let G = Ec
n be a semigraph with vertex set {u1, u2, . . . , un}, and let

G
′

=
[

G ⊕
′′

{u1,un} un+i

]N

i=1

, where N = n − 1 and det B(G
′

) is equal to zero.

Proof. When N = n − 1, the matrix B(G
′

) becomes a square matrix of order (2n − 1). From Theorem 3,
rank of B(G

′

) = (n − 1) + 2 = n + 1. Hence G
′

is not a full rank matrix and det B(G
′

) = 0.

Theorem 4 Let G = Ec
n be a semigraph with vertex set {u1, u2, . . . , un} and let un+1, un+2, . . . , un+n be

vertices of H = Ec
n. Let G

′

=
[

G ⊕
′′′

ui
un+i

]n

i=1

. Then the rank of B(G
′

) is m− 1 where m is the number of

edges in G
′

.
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Proof. The number of vertices and edges in G
′

is 2n and n + 2, respectively. Clearly, 2n > n + 2 ∀, n ≥ 3.
The binomial incidence matrix of G

′

is of the form

B(G
′

) =

















































e1 e2 e′1 e′2 ... e′n−1 e′n
u1

n−1C0 0 1 0 ... 0 0
u2

n−1C1 0 0 1 ... 0 0
u3

n−1C2 0 0 0 ... 0 0
. . . . . . . .
. . . . . . . .
un−1 0 0 0 0 ... 1 0
un

n−1Cn−1 0 0 0 ... 0 1
un+1 0 n−1C0 1 0 ... 0 0
un+2 0 n−1C1 0 1 ... 0 0
un+3 0 n−1C2 0 0 ... 0 0
. . . . . . . .
. . . . . . . .
u2n−1 0 0 0 0 ... 1 0
u2n 0 n−1Cn−1 0 0 ... 0 1

















































If X = (x1, x2, . . . , xn+2)
T is a vector in the right null space B(G

′

) then BX = 0. This implies that,

n−1Csx1 + xs+3 = 0, ∀ s, 0 ≤ s ≤ n − 1,

n−1Csx2 + xs+3 = 0, ∀ s, 0 ≤ s ≤ n − 1,

=⇒ x1 = x2 = −
xs+3

n−1Cs

, ∀ s, 0 ≤ s ≤ n − 1.

Hence, there exits only one vector in the right null space of BX = 0 i.e (1, 1,−n−1C0, . . . ,−
n−1Cn−1).

Therefore, rank of B(G
′

) = (n + 2) − 1 = m − 1.

Theorem 5 Let G = (V, E) a connected semigraph with exactly one semiedge. If G contains T 1
n−1 or Zn−1

n

as its subsemigraph then rank of B(G) is equal to |V (G)|.

Proof. Let G be a semigraph with p vertices and m edges among which only one edge is a semiedge and let
T 1

n−1 be a subsemigraph of G. We note that, n ≤ p ≤ m.
Let B(G) be the binomial incidence matrix of G Then it is of the form,

B(G) =









B(T 1
n−1)n×n

Op−n×n F









,

where B(T 1
n−1) is a sqaure matrix of order n with rows as parts of first n rows of B(G) and column

corresponding to the edges e1, e2, . . . , en which are first n edges of G. And, Op−n×n is a zero matrix of order
(p − n) × n and F is p × (m − n) matrix with columns corresponding to edges en+1, en+2, . . . , em which are
of size two.
Suppose, X ∈ Rp be such that X′

B(G) = 0. Then, xi +xj = 0 whenever the vertices ui and uj are adjacent
by an edge of size two. Therefore, xi + xn = 0 that is xi = −xn, ∀ i, 1 ≤ i ≤ n − 1. We have from first
column of B(G),

x1
n−2C0 + x2

n−2C1 + . . . + xn−1
n−2Cn−2 = 0,

i.e − xn{
n−2C0 + n−2C1 + . . . + n−2Cn−2} = 0

=⇒ xn = 0 =⇒ xi = 0, ∀ i, 1 ≤ i ≤ n.
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Now, consider the partition {V1, V2} of V (G) where V1 is the vertex set of T ′
n−1 and V2 = V (G) \V1. For an

edge ei, i > n with end vertices us and ut, since ei is of size two, we have xs +xt = 0. If us ∈ V1 and ut ∈ V2,
then s ≤ n and t > n and xs = 0, which implies xt = 0. Suppose that us and ut both are in V2. Then, since
G is connected, there exists a path between us and ut which consists only of edges of size two and which
passes through at least one vertex in V1. This implies that xs = 0 and xt = 0. Hence, xi = 0 ∀i, 1 ≤ i ≤ p.
Thus, null space of B(G) is of dimension zero and rank of B(G) is equal to |V (G)|.

Continuing in similar lines, one can prove that rank of B(G) = |V (G)| when G is a connected semigraph
which has only one semiedge and has Zn−1

n as a sub semigraph.

Applications In communication networks, not all nodes are equally important. Some of them may
just receive and transmit the data whereas, some others may be used to process the data. So, in the graph
representing the communication networks, all the vertices need not have the same importance, such situations
could be better represented by a graph model called semigraph. In particular, Ec

n is an edge with n vertices
on the same edge with exactly two end vertices and the remaining are mid vertices, where any two vertices
are mutually adjacent to each other. Hence, in communication networks, Ec

n represents the situation where
the communication takes place between every pair of vertices and only two of them which are placed at the
end are of more importance.

In theoretical computer science, communication complexity studies the amount of communication re-
quired to solve a problem when the input to the problem is distributed among two or more parties. In the
field of communication complexity, the rank of the communication matrix of a function gives bounds on the
amount of communication needed for two or more parties to compute the function.

In this article, we have studied the rank of the binomial incidence matrix of the semigraph which represents
the semigraph uniquely, which inturn gives a better picture of communication complexity when Ec

n is part
of the communication network.

Conclusions We have studied the structure of a semigraph in terms of its substructures and also change
in the structure of semigraph by adding graphs and vertices to a specific semigraph. Also the effect on
the rank of the binomial incidence matrix of a semigraph have been discussed. Majority of the semigraphs
resulted from addition operation in this article are of full rank.
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