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Abstract

In this paper using generalized integral operators, we first obtain new interesting generalized improved
Hölder integral inequality. Also, after deriving a new lemma using these operators, we give two results
via quasi—convex functions. Some special cases of our results recapture known results. At the end, some
error estimates are given to illustrate the applications and effi ciency of the obtained results.

1 Introduction and Preliminaries

A function f : I ⊂ R→ R is said to be convex, if

f(t℘1 + (1− t)℘2) ≤ tf(℘1) + (1− t)f(℘2),

holds for all ℘1, ℘2 ∈ I and t ∈ [0, 1]. Likewise f is concave if (−f) is convex.
The following inequality, named Hermite-Hadamard inequality, is one of the most famous inequalities in

the literature for convex functions.

Theorem 1 Let f : I ⊂ R→ R be a convex function on I and ℘1, ℘2 ∈ I with ℘1 < ℘2. Then the following
double inequality holds:

f

(
℘1 + ℘2

2

)
≤ 1

℘2 − ℘1

∫ ℘2

℘1

f(x)dx ≤ f(℘1) + f(℘2)

2
. (1)

The above inequality first published by Hermite in 1883 [11] and by Hadamard, independently, 10 years
later [9]. The full history of this inequality can be found in [19].
Various extensions of this notion have been reported in the literature in recent years, see [1, 4, 6, 12, 13,

14, 16, 17, 22, 26]. Mo et al. in [20], introduced the following generalized convex function.
To facilitate understanding of this work, we present the following sets [28, 29], considering 0 < α ≤ 1:

• the fractal set of integers Zα is defined by Zα = { 0α} ∪ {± mα : m ∈ N};

• the fractal set of rational numbers Qα is defined by

Qα = {qα : q ∈ Q} =
{(m

n

)α
: m ∈ Z, n ∈ N

}
;
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222 New Integral Inequalities Using Quasi-Convex Functions

• the fractal set of irrational numbers Jα is defined by

Jα = {rα : r ∈ J} =
{
rα 6=

(m
n

)α}
;

• the fractal real set Rα is defined by Rα = Qα ∪ Jα.

where R, R+, Q, J, Z and N are the sets of real and positive real numbers, rational numbers, irrational
numbers, integers and positive integers, respectively.

Definition 1 Let f : I ⊂ R → Rα be a function and α ∈ (0, 1]. For any ℘1, ℘2 ∈ I and t ∈ [0, 1], if the
following inequality holds:

f(t℘1 + (1− t)℘2) ≤ tαf(℘1) + (1− t)αf(℘2),

then f is said to be generalized convex on I.

The following are two interesting examples of generalized convex functions, see [20]:

1. f(t) = tαp, where t ≥ 0 and p > 1;

2. g(t) = Eα(tα), t ∈ R, where Eα(tα) =
∑+∞
k=0

tαk

Γ(1+kα) is the Mittag-Leffl er function and Γ(·) is the
well-known gamma function.

Now, we recall some basic and useful definitions and theorems as follows:

Definition 2 ([12]) A function f : [℘1, ℘2]→ R is said to be quasi-convex on [℘1, ℘2], if

f(tx1 + (1− t)x2) ≤ sup{f(x1), f(x2)}

for all x1, x2 ∈ [℘1, ℘2] and t ∈ [0, 1].

It’s clear that any convex function is a quasi—convex function but there exist quasi—convex functions
which are not convex, see [12]. The following famous inequality is known as Young inequality.

Proposition 1 ([13]) If x1, x2 > 0 and t ∈ [0, 1], then

xt1x
1−t
2 ≤ tx1 + (1− t)x2.

Equality holds if and only if x1 = x2.

One of the areas of greatest development in mathematics today is that of Fractional and Generalized
Calculus, the proliferation of integral and differential operators (whether local and global) in various appli-
cations and theoretical developments can be seen in many publications and research. A more general idea,
on the need to use operators of various kinds as well as their classification, see [2, 3, 23, 27].
The following is the generalized derivative that we will use in our work, it was defined in [30] and

independently in [21], where it was studied intensively. In the first work it was called Generalized Conformable
Fractional Derivative (GCFD), in the second work it is specified that not only are proper conformables, that
is, they “return" the ordinary derivative when α→ 1, if not they can be non-conformables, and even improper
conformables, i.e. F (t, α)→ 1 when t→ +∞, see [7].

Definition 3 Let f : [0,+∞) → R, where F(t, α) is some positive function defined on [0,+∞) such that
the following limit exist. The NF -derivative of function f of order α is defined by

Nα
Ff(t) = lim

ε→0

f(t+ εF(t, α))− f(t)

ε
(2)

for all t > 0, where α ∈ (0, 1].
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If f is α-differentiable in some (0, a) with a > 0 and lim
t→0+

N (α)
F f(t) exists, then we define

N (α)
F f(0) = lim

t→0+
N (α)
F f(t).

Throughout this remaining paper, we will consider that the integral operator kernel T (t, α) given below is
positive and absolutely continuous function with respect to first variable, more details can be found in [8, 30].

Definition 4 ([8]) Let I ⊂ R for ℘1, ℘2 ∈ I and α ∈ (0, 1]. The integral operators J αT ,℘1+ and J αT ,℘2−,
respectively, right and left, are defined for every locally integrable function f on I as follows:

J αT ,℘1+(f)(t) =

∫ t

℘1

f(s)

T (t− s, α)
ds, t > ℘1 (3)

and

J αT ,℘2−(f)(t) =

∫ ℘2

t

f(s)

T (s− t, α)
ds, t < ℘2. (4)

Remark 1 There is no relation or formula between the functions F and T but if we know the function F ,
then we can choose T in such a way that Definition 4 will be well defined.

Remark 2 It is easy to see that the case of the J αT operator defined above contains, as particular cases, the
integral operators obtained from conformable and non-conformable local derivatives. However, we will see
that it goes much further by containing the cases listed at the beginning of the work. Hence, we have

1) If F(t, α) = t1−α, then T (t − s, α) = Γ(α)F(t − s, α) and from (3), we have the right side Riemann—
Liouville fractional integrals (Rα℘1+f)(t). Similarly, from (4) we obtain the left derivative of Riemann—
Liouville. Then its corresponding right differential operator is(

RDα
℘+1
f
)

(t) =
d

dt
(R1−α

℘1+f)(t).

Analogously, we obtain the left differential operator.

2) With F(t, α) = (1 − α)t, then T (t − s, α) = Γ(α)F(ln t − ln s, α)t and from (3), we obtain the right
Hadamard integral. The left Hadamard integral is obtained similarly from (4). The right derivative is

(HDα
℘+1
f)(t) = t

d

dt
(H1−α

℘1+f)(t).

Similarly for the left derivative.

3) The right Katugampola integral is obtained from (3), making

F(t, α) = t1−α, r(t) = t%, T (t− s, α) = ρα−1 Γ(α)

F(ρ, α)

F(r(t)− r(s), α)

r′(s)
.

Analogously for the left fractional integral. In this case, the right derivative is

(KDα,ρ
℘+1
f)(t) = t1−ρ

d

dt
K1−α,ρ
℘1+

f(t) = F(t, ρ)
d

dt
K1−α,ρ
℘1+

f(t).

We can obtain the left derivative in the same way.

4) The solution of equation (−∆)
−α2 φ(u) = −f(u) called Riesz potential, is given by the expression

φ(u) = Cαn
∫
Rn

f(v)

|u− v|n−α
dv,

where Cαn is a constant, see [5, 10, 18]. Obviously, this solution can be expressed in terms of the operator
(3) very easily.
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5) Obviously, we can define the lateral derivative operators, respectively, right and left, in the case of our
generalized derivative. One way is in the Definition 3 to consider values of ε greater or less than zero
and, the other way is suffi cient to consider them from the corresponding integral operator. To do this,
just make use of the fact that, if f is differentiable, then Nα

Ff(t) = F(t, α)f ′(t), where f ′(t) is the
ordinary derivative. For the right derivative, we have(

Nα
F,℘1+f

)
(t) = Nα

F
[
J αT ,℘1+(f)(t)

]
=

d

du

[
J αT ,℘1+(f)(t)

]
F(u, α).

Similarly to the left derivative.

6) It is clear then, that from our definition, new extensions and generalizations of known integral operators
can be defined, see [15]. Let p : [℘1, ℘2] → R be an increasing and positive monotone function on
(℘1, ℘2] having a continuous derivative p′(t) on (℘1, ℘2). The left side fractional integral of f with
respect to the function p on [℘1, ℘2] of order α > 0 is defined by

Iαp,℘1+(f)(t) =
1

Γ(α)

∫ t

℘1

p′(s)f(s)

[p(t)− p(s)]1−α
ds, t > ℘1. (5)

Similarly the right lateral derivative is defined by

Iαp,℘2−(f)(t) =
1

Γ(α)

∫ ℘2

t

p′(s)f(s)

[p(s)− p(t)]1−α
ds, t < ℘2. (6)

It will be very easy for the reader to build the T in this case.

7) The k-analogue of above definition is defined in [6, 16], under the same assumptions on function p as
follows:

Iα,kp,℘1+(f)(t) =
1

Γ(α)

∫ t

℘1

p′(s)f(s)

[p(t)− p(s)]1−
α
k
ds, t > ℘1. (7)

Similarly the right lateral derivative is given as

Iα,kp,℘2−(f)(t) =
1

Γ(α)

∫ ℘2

t

p′(s)f(s)

[p(s)− p(t)]1−
α
k
ds, t < ℘2. (8)

The corresponding differential operator is also very easy to obtain.

Remark 3 We will also use the central integral operator defined by

J αT ,℘1(f)(℘2) =

∫ ℘2

℘1

f(t)

T (t, α)
dt, ℘1 < ℘2. (9)

Theorem 2 ([8]) Let h be NT —differentiable function on (x0,+∞) with α ∈ (0, 1]. Then for all x > x0, we
have

a) J αT ,x0 (Nα
T h(x)) = h(x)− h(x0);

b) Nα
T
(
J αT ,x0h(x)

)
= h(x).

An necessary and important property is established in the following result, its proof is similar to that of
the entire case, so we leave the details to the interested reader.

Theorem 3 (Integration by parts) Let p and q are two NT -differentiable functions on (x0,+∞) with
α ∈ (0, 1]. Then for all x > x0, we get

J αT ,x0 ((pNα
T q)(x)) = [p(x)q(x)− p(x0)q(x0)]− J αT ,x0 ((qNα

T p)(x)) .

Motivated by above results and literatures, using generalized fractional integral operators, we will obtain
in Section 2 a new interesting generalized improved Hölder integral inequality. Also, after deriving a useful
lemma using these operators, we will give two results via quasi-convex functions. Some special cases of our
results will deduce known results. In Section 3, some applications of the obtained results for error estimates
will be illustrated. In Section 4, a briefly conclusion will be provided as well.
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2 Main Results

Before we prove our results, let denote, respectively, L[℘1, ℘2] the set of all Riemann integrable functions on
[℘1, ℘2] and I◦ the interior of I.

Theorem 4 (Generalized improved Hölder integral inequality) Let u and v be two real functions
defined on [℘1, ℘2] and |u|, |v|q, |u||v|q ∈ L[℘1, ℘2]. Then for q ≥ 1, the following inequalities hold:

J αT ,℘1 |uv| (℘2) ≤ 1

℘2 − ℘1

[(
J αT ,℘1(℘2 − t) |u|(℘2)

)1− 1
q
(
J αT ,℘1(℘2 − t) |v|q(℘2)

) 1
q

+
(
J αT ,℘1(t− ℘1) |u|(℘2)

)1− 1
q
(
J αT ,℘1(t− ℘1) |v|q(℘2)

) 1
q

]
≤

(
J αT ,℘1 |u|(℘2)

)1− 1
q
(
J αT ,℘1 |u||v|

q
(℘2)

) 1
q . (10)

Proof. We consider only the case q > 1, where 1
p + 1

q = 1 since for q = 1, it is easy to verify that equality
in (10) is fulfilled. Using properties of modulus, we have

|uv| = 1

℘2 − ℘1

∣∣∣∣(℘2 − t)
1
pu

1
p
(℘2 − t)

1
q u

1
q
v + (t− ℘1)

1
pu

1
p
(t− ℘1)

1
q u

1
q
v

∣∣∣∣
≤ 1

℘2 − ℘1

{∣∣∣∣(℘2 − t)
1
pu

1
p
(℘2 − t)

1
q u

1
q
v

∣∣∣∣+

∣∣∣∣(t− ℘1)
1
pu

1
p
(t− ℘1)

1
q u

1
q
v

∣∣∣∣} .
Then, from definition of J αT ,℘1 and Hölder’s inequality the desired left side inequality of (10) is derived.
For the right side inequality of (10), we will first consider the following case:

(
J αT ,℘1 |u|(℘2)

)1− 1
q
(
J αT ,℘1 |u| |v|

q
(℘2)

) 1
q = 0.

Then the inequality in the right side of (10) is trivial, if |u| = 0. The same results can be obtain for |u| 6= 0.
So, we take

A =
(
J αT ,℘1 |u|(℘2)

)1− 1
q
(
J αT ,℘1 |u| |v|

q
(℘2)

) 1
q 6= 0.

Since A 6= 0, we get

1

A · (℘2 − ℘1)

[(
J αT,℘1(℘2 − t) |u|(℘2)

)1− 1
q
(
J αT ,℘1(℘2 − t) |v|q(℘2)

) 1
q

+
(
J αT ,℘1(t− ℘1) |u|(℘2)

)1− 1
q
(
J αT ,℘1(t− ℘1) |v|q(℘2)

) 1
q

]
≤ 1

(℘2 − ℘1)

[(
J αT ,℘1(℘2 − t) |u|(℘2)

J αT ,℘1 |u|(℘2)

)1− 1
q
(
J αT ,℘1(℘2 − t)|v|q(℘2)

J αT ,℘1 |u||v|
q
(℘2)

) 1
q

+

(
J αT ,℘1(t− ℘1) |u|(℘2)

J αT ,℘1 |u|(℘2)

)1− 1
q
(
J αT ,℘1(t− ℘1)|v|q(℘2)

J αT ,℘1 |u||v|
q
(℘2)

) 1
q
]
. (11)
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By applying Young’s inequality given in Proposition 1 on inequality (11), we have[(
J αT ,℘1(℘2 − t) |u|(℘2)

J αT ,℘1 |u|(℘2)

)1− 1
q
(
J αT ,℘1(℘2 − t)|v|q(℘2)

J αT ,℘1 |u||v|
q
(℘2)

) 1
q

+

(
J αT ,℘1(t− ℘1) |u|(℘2)

J αT ,℘1 |u|(℘2)

)1− 1
q
(
J αT ,℘1(t− ℘1)|v|q(℘2)

J αT ,℘1 |u||v|
q
(℘2)

) 1
q
]

≤
[

(q − 1)J αT ,℘1(℘2 − t) |u|(℘2)

qJ αT ,℘1 |u|(℘2)
+
J αT ,℘1(℘2 − t)|v|q(℘2)

qJ αT ,℘1 |u||v|
q
(℘2)

+
(q − 1)J αT ,℘1(t− ℘1) |u|(℘2)

qJ αT ,℘1 |u|(℘2)
+
J αT ,℘1(t− ℘1)|v|q(℘2)

qJ αT ,℘1 |u||v|
q
(℘2)

]
= 1.

The proof of Theorem 4 is completed.

Corollary 1 Choosing T (t, α) ≡ 1 in Theorem 4, then we get ([13], Theorem 2.1).

Remark 4 If we consider other specific kernels, for example, T (t, α) = t1−α, the Lemma 1 of [24] and
Lemma 2.8 of [25] are recaptured. Obviously, using other kernels, we can obtain different “weighted" versions
of Hölder’s classical inequality.

The following Lemma 1 is very important to derive our following results.

Lemma 1 Let f : I ⊂ R → R be a differentiable function on I◦ and let ℘1, ℘2 ∈ I, where ℘1 < ℘2. If
Nα
T f ∈ L[℘1, ℘2], then we have the following identity:

f(℘1) + f(℘2)

2
− 1

℘2 − ℘1
J αT ,℘1(f)(℘2) =

(℘2 − ℘1)

4
(J1 + J2) , (12)

where

J1 = J αT ,0
[
−tNα

T f

(
1 + t

2
℘1 +

1− t
2

℘2

)]
(1)

and

J2 = J αT ,0
[
tNα
T f

(
1− t

2
℘1 +

1 + t

2
℘2

)]
(1).

Proof. Integrating by parts and using a change of variable on J1, we have

J1 =
2

℘2 − ℘1
f(℘1)− 4

(℘2 − ℘1)
2J

α
T ,℘1(f)

(
℘1 + ℘2

2

)
. (13)

Similarly working on J2, we get

J2 =
2

℘2 − ℘1
f(℘2)− 4

(℘2 − ℘1)
2J

α
T ,℘1+℘22

(f)(℘2). (14)

After adding equalities (13) and (14), and multiplying both sides by the factor ℘2−℘14 , we obtain the desired
equality (12).

Remark 5 Making T (t, α) ≡ 1 in Lemma 1, we have ([1], Lemma 2.1).
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Theorem 5 Let f : I ⊂ R → R be a differentiable function on I◦ and let ℘1, ℘2 ∈ I, where ℘1 < ℘2. If
Nα
T f ∈ L[℘1, ℘2] and |Nα

T f | is quasi—convex function on [℘1, ℘2], then we have∣∣∣∣f(℘1) + f(℘2)

2
− 1

℘2 − ℘1
J αT ,℘1(f)(℘2)

∣∣∣∣
≤ (℘2 − ℘1)

4
T×

[
sup

{
|Nα
T f (℘1)|,

∣∣∣∣Nα
T f

(
℘1 + ℘2

2

)∣∣∣∣}

+sup

{∣∣∣∣Nα
T f

(
℘1 + ℘2

2

)∣∣∣∣, |Nα
T f (℘2)|

}]
, (15)

where J αT ,0(t)(1) = T.

Proof. Using Lemma 1 and property of modulus, we have∣∣∣∣f(℘1) + f(℘2)

2
− 1

℘2 − ℘1
J αT ,℘1(f)(℘2)

∣∣∣∣ ≤ (℘2 − ℘1)

4
(|J1|+ |J2|) .

From the quasi—convexity of |Nα
T f |, we get

|J1| ≤ T
(

sup

{
|Nα
T f (℘1)|,

∣∣∣∣Nα
T f

(
℘1 + ℘2

2

)∣∣∣∣}) (16)

and

|J2| ≤ T
(

sup

{∣∣∣∣Nα
T f

(
℘1 + ℘2

2

)∣∣∣∣, |Nα
T f (℘2)|

})
. (17)

Adding inequalities (16) and (17), and taking out common factor T, is obtained inequality (15).

Remark 6 Considering T (t, α) ≡ 1 in Theorem 5, we have T = 1
2 . In this way, we obtain ([1], Theorem

2.2).

Theorem 6 Let f : I ⊂ R → R be a differentiable function on I◦ and let ℘1, ℘2 ∈ I, where ℘1 < ℘2. If
Nα
T f ∈ L[℘1, ℘2] and |Nα

T f |
q is quasi-convex function on [℘1, ℘2], then for q > 1 and 1

p + 1
q = 1, we have∣∣∣∣f(℘1) + f(℘2)

2
− 1

℘2 − ℘1
J αT ,℘1(f)(℘2)

∣∣∣∣
≤ (℘2 − ℘1)

4
L(p)×

[(
sup

{
|Nα
T f (℘1)|q,

∣∣∣∣Nα
T f

(
℘1 + ℘2

2

)∣∣∣∣q})
1
q

+

(
sup

{∣∣∣∣Nα
T f

(
℘1 + ℘2

2

)∣∣∣∣q, |Nα
T f (℘2)|q

}) 1
q

]
(18)

where L(p) =
(
J αT ,0(tp) (1)

) 1
p .

Proof. Using Lemma 1 and property of modulus, we have∣∣∣∣f(℘1) + f(℘2)

2
− 1

℘2 − ℘1
J αT ,℘1(f)(℘2)

∣∣∣∣ ≤ (℘2 − ℘1)

4
(|J1|+ |J2|) .

Also, by quasi—convexity of |Nα
T f |

q and Hölder’s inequality, we get

|J1| ≤ L(p)

(
sup

{
|Nα
T f (℘1)|q,

∣∣∣∣Nα
T f

(
℘1 + ℘2

2

)∣∣∣∣q})
1
q

(19)
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and

|J2| ≤ L(p)

(
sup

{∣∣∣∣Nα
T f

(
℘1 + ℘2

2

)∣∣∣∣q, |Nα
T f (℘2)|q

}) 1
q

. (20)

Adding inequalities (19) and (20), and taking out common factor L(p), is obtained inequality (18).

Corollary 2 Taking T (t, α) ≡ 1 in Theorem 6, we obtain ([1], Theorem 2.3). Interested reader can see also
([13], Theorem 2.4).

3 Applications

In this last section, we consider applications of the integral inequalities given in Section 2, to find some error
estimates of quadrature rules, which in turn are variants of the well—known method of rectangles.
First, let U : ℘1 = x0 < x1 < . . . < xn−1 < xn = ℘2 be a partition of [℘1, ℘2]. We denote, respectively,

P(U , f, T ) =

n−1∑
i=0

(
f(xi) + f(xi+1)

2

)
hi

and
J αT ,℘1(f)(℘2) = P(U , f, T ) +R(U , f, T ),

where R(U , f, T ) is the remainder term (error estimation) and hi = xi+1−xi for i = 0, 1, 2, . . . , n− 1. Using
above notations, we are in position to prove the following results.

Theorem 7 Let f : I ⊂ R → R be a differentiable function on I◦, where ℘1, ℘2 ∈ I and ℘1 < ℘2. If
Nα
T f ∈ L[℘1, ℘2] and |Nα

T f | is quasi—convex function on [℘1, ℘2], then the remainder term satisfies the
following error estimation:

|R(U , f, T )| ≤ T
4

n−1∑
i=0

[
A(i) + B(i)

]
h2
i , (21)

where

A(i) = sup

{
|Nα
T f (xi)|,

∣∣∣∣Nα
T f

(
xi + xi+1

2

)∣∣∣∣},
B(i) = sup

{∣∣∣∣Nα
T f

(
xi + xi+1

2

)∣∣∣∣, |Nα
T f (xi+1)|

}
and T is defined as in Theorem 5.

Proof. Using the Theorem 5 on subinterval [xi, xi+1] of closed interval [℘1, ℘2], for all i = 0, 1, 2, . . . , n− 1,
we have ∣∣∣∣(f(xi) + f(xi+1)

2

)
hi − J αT ,xi(f)(xi+1)

∣∣∣∣ ≤ T4 [A(i) + B(i)
]
h2
i . (22)

Summing inequality (22) over i from 0 to n− 1 and using the properties of modulus, we obtain the desired
inequality (21).

Theorem 8 Let f : I ⊂ R → R be a differentiable function on I◦, where ℘1, ℘2 ∈ I and ℘1 < ℘2. If
Nα
T f ∈ L[℘1, ℘2] and |Nα

T f |
q is quasi-convex function on [℘1, ℘2], then for q > 1 and 1

p + 1
q = 1, the

remainder term satisfies the following error estimation:

|R(U , f, T )| ≤ L(p)

4

n−1∑
i=0

[
(C(i, q))

1
q + (D(i, q))

1
q

]
h2
i , (23)
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where

C(i, q) = sup

{
|Nα
T f (xi)|q,

∣∣∣∣Nα
T f

(
xi + xi+1

2

)∣∣∣∣q},
D(i, q) = sup

{∣∣∣∣Nα
T f

(
xi + xi+1

2

)∣∣∣∣q, |Nα
T f (xi+1)|q

}
and L(p) is defined as in Theorem 6.

Proof. Using the Theorem 6 on subinterval [xi, xi+1] of closed interval [℘1, ℘2], for all i = 0, 1, 2, . . . , n− 1,
we have ∣∣∣∣(f(xi) + f(xi+1)

2

)
hi − J αT ,xi(f)(xi+1)

∣∣∣∣ ≤ L(p)

4

[
(C(i, q))

1
q + (D(i, q))

1
q

]
h2
i . (24)

Summing inequality (24) over i from 0 to n − 1 and using the properties of modulus, we get the desired
inequality (23).

Next, we will show the advantages of the results obtained, in particular the Theorem 7. For this, consider
in the Definition 4, α = 0.5, f(t) = t3, ℘1 = 0, ℘2 = 1 and the kernels T = 1, t1−α and we will use the
partition of the interval [0, 1] given by U : ℘1 = x0 = 0 < 0.25 < 0.5 < 0.75 < 1 = x4 = ℘2, so h = 0.25.
For the kernel T ≡ 1, we have T = 1 and NFf(t) = f ′(t). Hence,∣∣R(U , t3, 1)

∣∣ ≤ 0.1494. (25)

In the case of kernel T = t1−α, we get T = 2 and NFf(t) = f ′
1
2 . Therefore,∣∣∣R(U , t3, t 12 )

∣∣∣ ≤ 0.0376. (26)

The exact value of the ordinary integral
∫ 1

0
t3dt is 0.25. If we calculate its approximate value by the method

of the rectangles, we will get
∫ 1

0
t3dt ≈ 0.3905.

Comparing with inequalities (25) and (26), we see that in the first case they are practically equivalent
results, while in the case of the conformable kernel, a better approximation is obtained.

4 Conclusion

In this paper using generalized integral operators, we first obtained new interesting generalized improved
Hölder integral inequality. By means of a new lemma using these operators, we given two results via quasi—
convex functions. Some known results are recaptured as special cases from our results. Finally, some error
estimates are given. Since convexity and (quasi-convexity) have large applications in many mathematical
areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics,
related optimization theory, mathematical inequalities and may stimulate further research in different areas
of pure and applied sciences.
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