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Abstract

In this work, using fractional calculus, we study an («, 3,7) sequential integro-differential problem of
Duffing type. The studied problem allows us, in particular, to obtain the standard Duffing problem. The
serious difficulty in our problem is the "(CO-SG)-absence"; the absence of commutativity and semi group
properties for the left hand side derivatives. By taking into account both the (CO-SG)-absence and the
conditions of the problem, we present the integral representation of the problem. Then, by virtue of
the integral representation, we prove some existence and uniqueness results. Also, we prove an existence
result using Schaefer fixed point theorem. In addition of these, two illustrative examples are discussed.

1 Introduction

It is well known that differential equations of arbitrary order are used for modelling several phenomena of
physics and engineering sciences. Fore some applications, we refer the reader to the papers [1, 2, 3,7, 9, 10, 11,
12, 15, 18, 22, 23, 24, 27, 28, 30]. The Duffing equation is considered as an excellent example of a dynamical
system that is used to model certain driven-damped oscillators, see [5, 8, 13, 16, 17, 19, 20, 21, 25, 26, 29].
The standard form of Duffing problem is given by the following differential equation[6]:

') +a )+ f(t 2 () =h(t), t€[0,1], a>0,

under the conditions:
z2(0)=A€R, 2/(0)=BeR,

where the t-function z is the displacement, 2’ is the velocity, z” is the acceleration, and f and h are two
given functions. Some authors have studied new types of the above Duffing equation. For example in [§],
the authors have examined the application of a numerical approach of the forced nonlinear Duffing equation:

DBu(t) 4+ §Du(t) + pu(t) + pu(t) = \sin (wt),
w(0) = A* € R, Du(0) = B* € R,
0<a<l 1<f<2 te]0,1],

taking into account that D® and D® are the Caputo fractional derivatives, while d, p, x and A are positive

real numbers.
In [26], the authors have investigated the following problem of Duffing type:

DPy(t) +aDy(t) + f (t,y (t)) = h (1),
y(20) = yo, ¥'(20) = y1,
O<a<l 1<f<2 a>0t€]0,1],
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where D? and D® are the Caputo fractional derivatives and z is an initial value in [0,1]. In a very recent
work [4], the authors have been concerned with the following Duffing type problem:

DPDz(t) + kf(t, D*2(t)) + g(t, 2(t), DP2(t)) = h(t),
2(0) = A* € R, D“2(0) = B* € R, z(1) = C* € R,
O<p<a<l, 1<fp<2 te]|0,1],

where D®, DP, DP are the Caputo derivatives, k is a real constant, the functions f, g and h are continuous.
In the present paper, our idea is the investigation of the following fractional problem of Duffing type:

DYDPDx(t) + kf(t, DO2(t)) + g(t, 2(£), DP2(t)) + h(t, 2(t), JU(2(t))) = L(t),
2(0) = Ay € R, D2(0) = Ay € R, Joz(1) = A3 € R, (1)
0<p<a<l, 0<B v<1l, l<a+B8<2 1<B+~y<2 tel.

We suppose that I := [0, 1], the derivatives of the problem are in the sense of Caputo, J? is the Riemann-
Liouville integral with ¢ >0, f: I xR?2 =R, g: I xR3 =R, h: I xR?> - R and L : I — R are four given
functions. It is very important to note the following remarks:

1* 1In the left hand side of the above problem, we consider three parameters of Caputo derivation; this
condition allows us to be concerned with a three sequential Duffing problem that does not verify the
above (CO-SG) properties.

2* The proposed problem is more interesting and more general, since on one hand, the classical Duffing
equation is of order two, and on the other hand, for some values of «, 3,7 applied to our problem,
we can obtain the standard form of Duffing equation of [6]; so the problem 1 can be used for better
modeling the fractional order case.

To the best of our knowledge and taken into consideration the particular equation of [9], this is the first
time in the literature where such three sequential Duffing problem is considered.

2 Basic Concepts
In this section, we recall some auxiliary results on fractional calculus that we need in this paper, see [14].

Definition 1 The Riemann-Liouville integral operator with order o > 0, for any continuous function f on
[a, b] is

Jelf@)] = ﬁf;(t—T)“_lf(T)dT fora>0anda<t<b,
JLf®)] = f(t) fora=0anda<t<b.

Definition 2 We take f € C™([0,1],R), m € N* and m — 1 < o < m. So the Caputo derivative is
Dof(z) = { ﬁ JoG=tym=o L fmydt, form—1<a<m,
7 2), fora=m,
= )
The following auxiliary lemmas are important to prove some of our results.
Lemma 1 The set of solutions of D*z(t) =0, t € I, is given by
2(t) = co + 1t +eat? + - F e g t"

where ¢; R, i=0,1,--- ,n—1, n=[a]+1 and o > 0.
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Lemma 2 We take o > 0 and n € N*. Thus, we have
JUD%2(t)] = 2(t) + co + crt + cot* + oo Fepit" T tET,
where ¢; ER, i=0,1,--- ,n—1 andn = [a] + 1.
Lemma 3 In the case where q1 > qz > 0, f € LY(I), it yields that
DEJU[f)] = JU=[f ().

Lemma 4 (Schaefer fixed point theorem) Let Z be a Banach space and @ : Z — Z be any completely
continuous operator. If W :={z € Z:z=ndz, 0<n <1} is bounded, then ® has at least one fized point
mn Z.

Now, we pass to prove the following lemma which will allow us to establish the unique integral represen-
tation for (1):

Lemma 5 Let R C([0,1]),t € I =10,1], 0 < 0, 8,7 < 1. Then the representation of the problem

DY (DP[D*z(t)]) = R(t), @
z(0) = A1, D%z(0) = Ay, J%z(1) = As,
18 illustrated as
t S u
(t—s)*" / (s —u)’! / (u—o)t
z(t) = / R(v)dvduds
) o) o(5) Ty )
0 0 0
1 s u
(1—s)>! / (s —w)f! / (u—v)t
—-B / R()dv | du | ds| t*7°
H) e ) ) )
0 0 0
— [ByAs + B3 Ay — By As) t9T8 4 ByAgt® + Ay, (3)
such that B, — La+B+1) B, — I(2a+p8+1) B. — _ DatB+1)
1= T(a+B+1) ’ 27 T@Ea+ I (afp+l)’ 3 = T(at)I(atB+1)’
— 1 _ P(2a+B+1) _ T'(2a+8+1)
Bs = sy Bs = “rrmy B = r@atnrai)>
_ _T(2a+p+1) — T+ — _I+D)
Br = rarnrerny B8 = tarspry By = ra—pr1)-

are nomn zero pammeters.

Proof. Note that, with due attention to Lemma 2, a general solution of (2) can be written by the following
formula:
t

/ t— ) / (s _r(uﬁ))ﬁl O/ (u ;(1;);1 R(v)dvduds

0

tot-i—ﬂ tlx
—C
Fa+B8+1) 'T(a+1)

We can easily compute the three constants cg, ¢; and c3. We reach

' —5)2e—1 2 s—u) u—v)7"
co :F(Qoﬁ—ﬂ—i—l){ (lr(;a) <{ (f( F(,)” )dv) du) ds

I'(2a+p+1)A T'(2a+p+1)A
+ ( FeatD) ~ T~ fatn L (204 +B8+1)A

— C3. (4)

—Co

If we insert the above quantities of ¢y, ¢; and ¢y in (4), then we obtain (3). m
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3 Main Results

Before presenting to the reader the main results, the following space wit its norm needs to be introduced:
Z:={2€ C(I,R), D*2z € C(I,R), D’z € C(I,R)}

and
2/l ; = max{||z]l , D2l [IDP2ll}

where
2]l = sup|z(?)[, [[D%2|,, =sup|D%2(t)| and |[|DPz[ = sup|DPz(t)|.
tel tel tel

Then, we define ® : Z — Z by

O/t )o- 1/ S_r(uﬁ))ﬁ 1/ “;(”7);_1 {L(U)—kf(v,Daz(v))—g(w(v),D”Z(v))

Jr e e

—kf(v,D%%(v)) — g(v, 2(v), DPz(v)) — h(v, z(v), Jq(z(v)))} dv) du) ds] tets

— [BQAQ + B3A; — B1A3] ot + By Ast™ + Aq. (5)

—h(v, z(v), Jq(z(v)))} dvduds — By

The following hypotheses need also to be take into consideration:
(H1): There exist constants W; > 0, ¢ = 1...5, such that for each ¢ € I and for all ay, az,b1,bs € R, we have
(i) [f(t a1) = f(E,01)] < Wilay — b,
(i) |g(t, a1, a2) — g(t, b1,b2))| < Walar — b1| + Walag — by,
(iii) |h(t,a1,a2) — h(t,b1,b2)| < Wylag — b1| + W5 |az — ba|.
(H2): The four functions f: I x R =R, g: I x R2 =R, h: I x R?> = R and L : I — R are continuous.

(H3): There exist constants Ef > 0, E, > 0, Ej, > 0 and Ey, > 0 such that for each ¢ € I and all a1,a2 € R,
we have
|f(t,a1)| < Ef, |g(t,a1,a2)| < By, |h(t,a1,a2)| < B, and |L(t)| < EL.

In order to facilitate for the reader the proof of the main results, we consider the quantities:

1 1
o= B
T (k| W1+ W2 + W5 + Wa) [F(a+ﬁ+7+1) *l 1|F(2a+ﬁ+’y+1)}

+W[ ! +|By| ! ]
SIT(a+8+7+q+1)  "NTRa+B+7+q+1)]"

1 B
T :(|/€W1+W2+W3+W4)[ |5‘ ]

rp+~+1) +F(2a+ﬂ+’y+l)
1 " | Bs | ]
F(B+v+q+1) TRa+B+v+q+1)

7 |
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and
1 | B1 Bsg| }
Ts @ = (k| Wi+ Wa+ W5+ W.
3 (K[ W1+ Wa + Ws + Wa) Ta+B+v—p+l) TQRa+B+vy+1)
1 | B1Bs| }
+W, +
IT(@+B+~v+q—p+1) TQRa+B+y+qg+1)

At this moment, we are ready to express and verify the main results.

3.1 Existence and Uniqueness Criteria

Theorem 1 If (H1) holds and 0 < T < 1 where T := max(T1,T2,T3), then the problem (1) has a unique
solution on I.

Proof. It is sufficient for us to show that ® is a contractive operator.
A: Let z,y € Z. Then, thanks to (H1), we have

|@y(t) — D(t)]

IkwlD“y—xooo/t(tF(iil/ sr(uﬁ))ﬁ 1/ V)T 1dvduds

-1 _\B-1 -1
k| W, D ||y — By|totF s — u) W =0 dud
LR WAD® |y — 2, Bt / ) / o / 2 dududs

IN

t s

s)* 1 [ (s —u)f! [ (u— )71
(Waly = ol + WaD? [y = 2].) / el e e =
0

0

; g2l f(s—)B1 [ (4 — o)L
(el = ol 4 WaD? y = ol ) Bl [T [ FO duduas
0

0
t

t— a—1 . _ B—1 * _ v—1
Wl =l + Wy =l ) [Tl O [ duua,
0 0 0

(@) (8) I'()

1 s u
— g)2a-1 oNB—1 Ny—1
+ (Wally — 2|l + WsJ9 ||y — x| ) |Ba|t2+? / (t—s) /(5 u) /(“ ) doduds

) T INE) I'(7)
Consequently,
1 1
Sy(t) — Px(t)] < k|W1 + Wy + W3 + W, B
ig?‘ y(t) = 22(t)] < {(| LW W 4)[I‘(a—|—ﬁ+7+1)+ 1|F(20¢+B+7+1)}

avs | : + 1B ! [ b1~
SIT@tBtr+q+D)  UT@atrBrrtrqrn) W *lz:

Hence, || @y — @z, < T [y — |,

B: Let 2,y € Z. So we can remark that

|D*®y — D*®zx||

B+~ {20426+
< k| W) ||D%y — D%z su 74— Bs|su
< (KW D% I Lpr(ﬁJr R 5|te?r(2a+ﬁ+7+1)]



592 K. Tablennehas and Z. Dahmani

t t2a+2ﬁ+’y
+ (W- — x| + W5 ||DPy — DPx sup —— + | Bs| su
(Waly = ol + Wa | D7y = DPall) [sup et il sup oo D
. . B+ 120428+
+ (W. — x| + Ws ||Jy — Jiz sup ————— + |Bs|su .
(Wil = ol 4 Ws 1% = Tal) [sup gt b Balsup o B

Consequently, we get

12+ 2B+

Hl)a(Dy AVIDQQRBHa) < <(|k|t@& + Wy + Wy +’LV2)
| Bs|SUbrer TaramTn

PR
SUDtes F(pry+1) T ]

+Ws

‘B | . t2et2B8+7+a
515UPtel TRa+FT7Fa+1)

tP+r+a
SUPse T(aTyTqrn) T D ly — 2|, -
oo

Therefore,

1 B
Doay- D@l < (KW Wt Wat W) | o]

B+~v+1) +F(2a+5+’y+1)

+W[ ! 1By ! ”n—w
SITB+y+q+1) STCatBtrrtrqrn W *lz:

Thus, |D®y — D*®z|| < Ta|ly — |,

C: On the other side, for z,y € Z, we observe that

|DP®y — DPPz|

. totBty—p t3o+2B+7—p
< wWh) |D%y — D% su + |B1Bg|su
s (MW D%y ||°O<t€§’r(a+ﬁ+v—p+1) [B1 Stelf)r(2a+6+v+1))
) ) totB+y—p t3a+2B8+7—p
+ (W —z|,, + Ws||DPy — DPzx su + | B1Bg| su
(Welly = =lloc + Wa I D%y ||°°)<t€?F(a+6+’y—p+l) 1B 8|t£r(2a+5+~y+1))
. . tatB+r—p t3at26+7—p
+ (W, -zl + Ws||Jly — Jz su + | By Bs| su
Wally = @l + Ws 177 ||°°)<t€11)F(0z+[3+7—p+1) 1B 8|te?r(2a+5+7+1)>
Consequently,
1 | B1 Bs| ]
DP®y — DPdx < k| Wy + Wy + W5 + W,
| D72y loo = {(” 2+ Wat Wa O{F(a—&—ﬁ—kv—p—i—l) TRa+Atr+1)
1 | B1Bs| ”
—|—W -+ — T .
5[F(a+ﬁ+7+q—p+1) I'2a+B+v+q+1) v ==l

Thus, it yields that ||DP®y — DP®z| < T3 |ly — ||, .
The above three main steps guarantee that

| @z —Py|[z<T|z-ylz-

The Banach contraction principle allows us to say that the problem (1) has a unique solution. ®

3.2 Existence Criteria

Theorem 2 Suppose that (H2) and (H3) are valid. Then the problem (1) has at least one solution on I.
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Proof. We shall use Schaefer fixed point theorem.

Stepl: We show that ® is continuous on Z. Obviously, this step is trivial and hence we can omit it.

993

Step2: In this step, we show that ® maps any bounded set into another bounded set in Z. Suppose that

r>0and Br:={z € Z;||z||, <r}. For y € Br, we observe that

t

_ a—1 y _ B—1 u _ y—1
@yl < ELsup/(t °) /(S ) /(“ O doduds
tel
0 0

I(a) I'(5) I'(v)

2a 1 Y (S _ u)Bfl “ (u _ U)“/*l
+|B1| Ef su / / / dvduds | t*1P
[B| Er te? F(ﬂ) , F(’Y)

=

0

u

t s
_ Ja—1 _ B—1 _ -1
+\k|Efsup/ (t=s) /(s w) /(u v) dvduds
tel 0 0

I(a) I'(3) I'()

1

2a 1 (S _u)ﬁfl . (u—v)"*’l
+|B1| |k| Ef su / / / dvduds | to+P
Bl k| £y sup J I ) T0)

[ (t— 5)*! S(s—u)ﬂfl f (u— oyt
*Egi‘é‘?o/ (o) / RE) / Ty

1

1— 201 7 (g_ )1 [ (y—o)—1
+ |B1| Ey sup / ( r(sz)a) / (s FZZ) / (u F(:)) dvduds | t*+°
0 0 0

/ (t—s) ! / (s —u)f~t h (u—v)7~t
E p/ I(a) / I(3) / Dy i

1 s U

 N2a-1 _o\B-1 oyv—1

+\Bl|Ethl€11? /(1 F(S2)a) /(S I‘(uﬁ)) /(u F(:))’y dvduds | t*7°
) 0 0 0

and
1

|F(2a+'y+ﬁ+1)_

+|B < +o0.

1
(0] <|FE kKlEs+ E,+ F
[0l < B2+ By + B, + B [

So, we obtain

1 1
Oyll., < ([EL + k| Ef + Eg + By, +|B < +o0.
| ylloo_<[ Lt |k By + By + }]{F(a—&—v—kﬂ—&-l) | 1|r(2a+7+ﬂ+1)D >

Also, we have

1 1
D*d < E k|Ef+E,+ E +|B

+ |B6A2 + B;A; — B5A3‘ + |A2|> < +o0.

On the other hand, it is a simple task to show that

1 1

DPo < EpL+|k|Ef+Ey+ E +|B1B
10" ®yllo <[ Lt [k By + Eq ”{F(a—&—ﬁ—i—’y—p—i—l) 1By 8|F(2a+5+’y+1)
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+ |BQA2 + B3A; — BlA3| + |B4BgA2‘ > < +00. (8)

Thanks to (6), (7) and (8), we can observe that ® is uniformly bounded on Br.

Step3: Equicontinuity of the set Br. Let t1,t2 € I, such that ¢; < to, and let Br be the above bounded
set of Z. So for y € Br and for each ¢t € I, it can be seen that

& ;(2)@-1 O/(s - (uﬁ>)ﬁ O/(u;(?)”‘ldvduds

0

1 s u
1— 2a—1 _ B—1 _ ~y—1
Byt / 0_s / s P“) / W= oguas
0 0 0

Dy (t1) —Py(ta) < (EL+|k|Er+ Ey+ Ep)

['(2a) (B8) L'(v)
— (ByAy + B3 Ay — BiAs) 1577  ByAstS + Ay

to

_/ (t2 ;(Z))"“l 0/ (s ;(UB))B_l 0/ (u ;:y);_ldvduds

0

1 s u
_ e)2a—1 _ B—1 _ y—1
+B; t‘”‘ﬁ/(l 5) /(8 ) /(u v) dvduds
0 0 0

['(2a) ING)) I'(9)

+ (B2As + B3A; — By A3) t(5+’3 — By Aoty + Aq|.

Hence, we have

@y (t1) — Py (2)]

t1

(1 — )2 = (ts —5)° L [ (s—wfL [ (u—0v)~
/ (o) / T) / Ty

0

< (Ep+ |k Ef + Eg + En)

2}

o[ r@))alo/ T / . r(?;ld”d“dsl

t1

ttlx+ﬂ _ tgﬂrﬂ‘ + |B4A2| t?+6 _ tg+ﬂ‘ )

| B )
By Ay + BsA; — B1A
+<F(2a+ﬂ+’y+l)+| 2Ag + D3 A1 1As3]

With the same arguments, we can prove that

|D¥®y(t1) — D®y(te)| = (Er+|k|Ef+ Ey+ Ep)

Fltr— )Pt (ts —5)P~1 [ (s—u)-1
/ &) / Ty

0
t

bty —8)P71 [ (s —u)r L
+[ 5 / () d“dsl

ty
(1—s)2x-t s—u)ﬁ 1 (u—v)r~t
Er +|k|Ef + Eg+ Ep,) B/ / / dvduds
e WL g ) T ) Tw)

+|BsAs + Bry - By s | ¢ — 8] (10)
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On the other hand, we have

[DP@y(t1) — DP@y(t2)]

t1

[t =)* " = (1 =" [ (s=wft [yt
/ M) ! ro) ! R

0

< (Ep+|k[Er+ Ey+ Ep)

to s

(tz — S)a_l (s — u)B—l 7 (u _ ,U)’y—p—l
+/ I'(c) 0/ r'(B) 0/ T(y—p) dvduds]

ty

S

1 u
1— 2a—1 _ B—1 _ y—1
+| (Er + |k| Ef + E4 + Ey) |B1 Bs| / ( °) / (s =) / (u—v) dvduds
0

['(2a) I'(8) I'(7)

0

+ |B2A2 =+ BgAl — BlA3| |B8| tl]iH-B—p — tg+ﬁ—p

+[ByBoAs| [tT77 — 1577 (11)

It is clear to affirm that the right-hand sides of (9), (10) and (11) tend to zero, when t; — t5. Hence, ® is a
completely continuous operator.

Step4: We have to certify that the set W :={2€ Z:2=n®(2),0 <n < 1} is bounded in Z. Let y € W,
for some 0 < n < 1. We have y = n® (y), and then we can write:

1 1
< E.+ |k|Ef + E, + Ep] |—————— + | Bs

+|Bg Az + Br Ay — BsAsz| + | As )

In the same manner, we can prove that

1 1
D*d < Er+|k|lEr+E,+ E + |B
ID0yl < 0 B+ Es+ By Bl | i+ + VB e 5T

+|BsAs + By Ay — Bs As| + |A2|>~

Also, we have

1 1
DP® < Er,+|klEf+E,+ F + |B1B
ID*2yllo < ’7([ Lt K By + By + Bl [F(a+5+7p+1) 1B1 8|F(2a+5+7+1)}

+ |B2A2 + BdAl — B1A5| + ‘B4B9A2| )

Thanks to (6), (7) and (8), we deduce that ||y||, < co. This implies that W is bounded.
It follows from the above four steps that ® has at least one fixed point which is a solution of our problem.
]

4 Examples

This section deals with two examples to illustrate our results by.
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Example 1 We consider the following problem

DOTLDO-6I D06 (1) + 0.08f (¢, D™ 2(¢)) + g (¢, 2(t), D*52(t)) + h (¢, 2(t), JO*2(t)) = L(t) 19
{ 2(0) =7 +v2, D%612(0) = -1, JOOlz(1)= 2, te0,1]. (12)

It is clear that
a=061, =069, =071, k=008, p=05 g=04
and
cos(3+1t%) 4
ta = - s " )
f(t,01) VitE v

(t ) sin(24+1¢) 1 n 6
ai, o = —>=+-a —a
g\t, a1, az T g™ T o5 %2
1 2r —3 6
h(t =
(t,a1,a2) 80+ 4 + 5 ay + 71 %2
2t+3
L) - TJF

Taking t € [0,1] and a1, az, b1, by € R, we have

F(ta1) = F(t,b2)| < glas = bal,

lg(t,a1,a2) — g(t,b1,b2)| < |a1 —bi| + *|a2 — by

998
and
V2r —3 6
|h(t, a1, a2) — h(t, b1, ba| < — lar — b1| + ﬁ'aQ — by
Hence,
4 1 6 V2 —3 6
W1—§, Wz—g’ W3—@, W4_T’ W5_ﬁ'

Therefore, we obtain
Ty =0.53160, 715 =0.78697, T5=0.67076.

Consequently, we can write
T = HlaX(ThTQ,T:;) =0.78697 < 1.

By Theorem 1, we confirm that (12) has a unique solution on [0, 1].

Example 2 Let us now consider the following second problem:

DO-T0DO-S8DO-T34(¢) 4+ 0.11f (¢, DO "32(t)) + g (¢, 2(t), D*Cz(t)) + h (¢, 2(t), JO2(t)) = L(¢) 13
{ 2(0) =37 — /2, DY732(0) = —1, JOTz(1) = 158, te0,1], (13)

under the conditions

—3t

f(taal)zlizita%

cos(aiasz)

9(t a1, 02) = St ey

_ t+3
L(t) - "8
a=073, B=058 ~r=070 k=011, p=06 q=0.55.
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Clearly, we have

|f(taa/1)|S1:Ef7 |g(t7a15a2)|S

1
|h(t,a1,a2)] < pype =FEp and ||L(t)| =

Then, by Theorem 2, we state that (13) has a solution.

5 Conclusion

In the current research, we propose a new fractional problem of Duffing type. With its parameters, this
problem dos not satisfy the (CO-SG) properties, and it allows us, in particular, to obtain both the standard
form of Duffing equation and the fractional equation in [9]. Under some sufficient conditions, we establish
an existence and uniqueness criteria, then under some new sufficient conditions, we establish an existence
criteria for the studied problem. Two illustrative examples are also discussed.
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