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Abstract
In this paper, we establish necessary and sufficient invariants conditions for the affine equivalence of
some classes of planar cubic differential systems with respect to affine group SL(2,R) via invariant theory.
Moreover, we deduce the minimal rational base for each one of these classes after having constructed
normal forms.

1 Introduction

The algebraic invariant theory of differential equations plays a major role in the qualitative theory of poly-
nomial differential systems. A great contribution in the development of this theory is due to Sibirsky and his
school [15, 19, 23]. Besides, many important results have been obtained with the help of invariant theory such
as, the number and nature of singular points, normal forms, the geometrical and topological classification of
quadratic and cubic differential systems, see for instance [5, 12, 18, 17, 19].

It is worth noting that the invariants computation is rather cumbersome, since it is a combination of
complicated polynomials in several indeterminates of higher degrees. In [2, 6], the authors gave an algorithmic
methods to describe the algebra of invariants by using the fundamental theorem of classical invariant [8].

The main motivation of this work is the numerous applications of classical invariant theory in the study of
differential systems (see for example [3, 10, 15, 16, 20]), more specifically, the affine equivalence of two systems
with respect to the group SL(n,R) implies that they have the same topological and geometric properties,
and this makes it an important and useful property in the qualitative study of differential systems (see
[4, 7]). In [19], Sibirsky showed that for two n—dimensional polynomial differential systems to be affine
equivalent with respect to the group SL(n,R) (or O(n,R) ) it is necessary and sufficient that their absolute
invariants with respect to this group coincide. In [23], the authors obtained a complete classification to the
affine equivalence of planar homogeneous quadratic differential systems, which is characterized by algebraic
invariants conditions (see also [1]). In [14], Popa established a necessary and sufficient invariants conditions
for the affine equivalence of the class of planer homogeneous quadratic differential systems with linear parts,
which were used later by Sibirsky [19] for proving the existence of two foci of nonzero cyclicity for the same
class of differential systems in case when the origin is a center.

Inspired by the aforementioned works, the aim of the present paper is to give necessary and sufficient
invariants conditions for the affine equivalence of some classes of planar cubic differential systems with respect
to the affine group SL(2,R), we deduce the minimal rational base for each one of these classes after having
constructed normal forms. These kind of bases is a useful tool for qualitative study of polynomial differential
systems[13]. For instance, in [11] the authors showed how to reduce the expression of the conditions for
existence of a center (center-focus problem) of bidimensional polynomial systems of differential equations
with nonlinearities of fourth degree with the help of minimal rational basis associated with this system.

The article is organized as follows. In section 2, we present some preliminary results and notations. In
section 3, we construct canonical forms for the general planar cubic differential systems, then we establish
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necessary and sufficient invariants conditions for the affine equivalence of some classes with respect to the
affine group SL(2,R). In the last section, we deduce the minimal rational base for each one of these classes.

2 Preliminaries and Notations

Using Einstein’s notation [19], a polynomial differential system of degree at most k with coefficients in R is
written as:

; k
dx? . . .
ﬁ :CLJ—|—Zaéla2mar$a1xa2__.xar, Jy01, 0 € {1,2,...,7?,}, (1)
r=1
where for j = 1,7 and for r = 0, k, a, Las..a, € 7,1, here T,! denotes the space of tensors 1 time contravariant

and 7 times covariant symmetric with respect to the lower subscripts. The space 7,! corresponds to the
homogeneous part of degree r of the polynomials of the right hand side of system (1). We denote by C(n, k, R)
the dimensional coefficient space of system (1) and by a the vector of coefficients a = (a',d?, ...,aZ, ).

The action of the general linear group GL(n,R) on R™ : (Q, z) — Qz, induces the representation:
p: GL(n,R) — GL(C(n,k,R))
Q — p(Q),
defined by ‘ ' ‘
p(Q)a‘;]llOcz...Oér e szgllpgzz"'Pg:a,Z@l,@zﬁT’ (2)

where j,ajas...a, = I,n, r = 0,k, and Q is a matrix of GL(n,R) and P its inverse. The formula (2) is
called the formula of the centro-affine transformations.

Definition 1 A polynomial function C(a,z) : C (n,k,R) x R™ — R is called a covariant with respect to the
group GL(n,R) or GL(n,R)-covariant of (1) if there exists a character A of the linear group GL(n,R) such
that

VQ € GL(n,R),Va € C(n, k,R), C(p(Q)a, p(Q)x) = AQ)C(a, z).
If A = 1, the covariant is said to be absolute, otherwise it is said to be relative. If the C(a,x) is constant
with respect to x, then it is said to be a GL(n,R)-invariant.

According to [19], the character A (@) has the form A (Q) = det(Q)~", where w is an integer, called the
weight of covariant C(a,x).

Definition 2 A GL(n,R)-covariant C(a,x) is said to be reducible if it can be expressed as a polynomial
function of GL(n,R)-covariants of lower degree. If C(a,z) is reducible, we write C(a,x) = 0 (modulo

GL(n,R)).

Definition 3 A finite family B of GL(n,R)-covariants of (1) is called a system of generators if any GL(n,R)-
covariant of (1) is reducible to zero modulo B. A system B of generators is said to be minimal if none of
them is generated by the others.

Now, let us consider the tensor product (see [2]):
(761)®d0 ® (7'11)®d1 R ® (7;1)®d,,. ® R®5, 1<r<k. (3)
Then, we have the following result from [8].

Theorem 1 ([8]) The expressions obtained with the help of successive alternations and complete contraction
over the tensor products (3) form a system of generators of centro-affine covariants of (1).

Definition 4 A centro-affine covariant of (1) is said to be of type (do,dy,...,d,,d) if it is homogeneous of
degree d; (i =0,1,...,7) with respect to coordinates of ah,ay--a; and of degree & with respect to coordinates
of x € R™.
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Remark 1 An invariant constructed with the help of Theorem 1 is called generator invariant.

We denote by A(n, k,R) the R—algebra of the centro-affine covariants of (1), this algebra is multigraded
of finite type [9], hence

A(n, k,R) = @dy,dy ds,....dreNA(do dy ds, . dr6) (4)

and Ay, ds,....d,,s) is the finite linear space of the centro-affine covariants of type (do,d1,ds, ..., d,, d).

Example 1 If k = n = 2, the polynomials a®a® ap and a aﬁqaavapq are generator invariants with respect to
the linear group GL(2,R) belonging respectively to -/4(1,0,1,0 and Ao,1,2,0)-

The minimal system of generators for (1) in the case k = n = 2 was established by Vulpe [21], we shall
use the following elements of this basis :

_ _ [ _ o B é
I —aa,B 117—a'8aaﬁ, I =a agpQ 5a'yaé

_ — 4%a4,P — v Pq
I, = aBa Iig = a%a%abep,, Iy = aapa,yqawa ePq,

— Y _ePd, — g« Y — B Pq
Iy = a aﬁga ~E Ixg=a aaﬂa , I = aapavqaﬁ[;a eha,

- Y Pq = Bad
Iy = apr%q%saaaff € Iy = apgata’aley,,

Let us consider the family {Ji,...,Js1} of GL(2,R)—invariants for general cubic differential system
given by

Jp = aaaga Ji = af,af,al, "%, Jo1 = a%al) a %T iqsepqg
Jy = aapraéqéepqs Jio = ag‘praquaﬂélque’"sskl Joo = a agl; als, aqgepqe
J3 = aj,af, e, Ji3 = a8, 00,00 4P Joy = a%af) a; ad g ePIe™
Jy = ao‘aﬁagaﬁ, Jii=a aﬁaﬁaéag Josg = a(;pagq ,Yrkaislquam gkt
Js=a aﬁ aﬁaqqu, Jis =a aﬁaaﬁpahqsp Jos = agpagqazrkagslqusmskl
Js =a aB aﬁwapq Jig = a%agal aﬁaqapq, Jog = ag‘“pagrawkaislquemakl
Jr=a agpa%qa Jir=a agagpaﬁaqqu Jo7 = a ama(;qkaiglquam gkt
Js = awagraﬁqéepqs Jis = a®ajal,a al g "7, Jog = Tkafp %laﬁaqqus”ekl
Jo = aapafgaﬁqsapqe ., Jiw=a agavpagﬁqapq, Jog = ag,.cgékagslagﬁaquamekl
Jio = af,al,a7,,ePe™, Ty = a"aaa:{pavﬁquq, Jso = a%a a”’apagéﬁ,ygpq7

Ja1 = aaaﬂa”*ag“agﬁ,y, Jyo = a"‘a’%cﬂ am K sEPIE™,

J3o = aaﬁcﬂafwazaé, Juz3 = ao‘ama%pagw hePersekl

Js3 = a*a’ajl al a7, Jas = a®alya)s af a Wlsqus’”sskl

Jss=a aﬂa%paﬁrq #6551”‘15“ Jus = aaa’@ka%pagaqaglsqugmekl,

J35 = aaaﬁéazﬁ fw aly, €7, Jug =a a'@ Méqaﬂvkaal gPeeTsghl

Jss = a%al) ajzad, att, ePIe, Jur = Héaﬁva;ﬁpaﬁka L EPaemsekt

Jy7 = a“agﬂa%agr ak  ePIE™, Jas = al agsalalyal ePlem e,

Js = a aB amagraﬁ (EPIe™, Jyg = aMaﬁ aapafkagslquam ekt

J3g = a“aﬁéaﬁaagrafy‘qsque Js0 = afza 6a3pafkaf;sl6pq€”5kl

Jao = a®al] aﬁaag,aéqseme Js1 = vﬂa;%éa Lpalyal ePier e,

Ju1 = a‘)‘awawama’;qsapqa’"s J50 = ué ﬁﬂaawafkaf;slqua“skl,

Js53 = afj,yagaagp fkaqslqus”s ek Jsr =a%a éaﬂpawaﬁqka EPIee ekt

Jsa = aSsal,a} alal lqusrsskl Jss =a afvazpagraﬂqkaas 5”%”6“

Jss = a®aPaa’ auév 0437’ Js9 = a“‘a’g ay %r %kamlquzs’éakl,

Js6 = aaaﬁaﬂzgya%pazﬂqapq, Jeo = a auéa%aw quaaslepqersskl,
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rs kl

— a%aP a¥ ab ot . gV eP4
Jeg1 = a 500 A3, O oy EVIEE

Henceforth, we denote by B the set
{1, I3, 14, Iy, Iz, Ing, 1o, Io1, T2, 125, Iog, Ju,s - - -5 Je1 }-

3 Affine Equivalence of Planar Cubic Differential Systems

In this section, by using the constructed invariants in the preceding section, we give necessary and sufficient
invariants conditions for the affine equivalence of the general planar cubic differential systems with respect
to affine group SL(2,R) in the case Jy # 0, J; # 0 and I1; # 0. First, consider the general planar cubic
differential systems

P , ,
= @ +apx® + aiﬁxaazﬁ + afxﬁvxo‘xﬁx'y, j,a,B,y=1,2, (5)

which ia a particular case of systems (1) where n =2 and k = 3.

Definition 5 We say that two families S (a(l)) and S (a(Q)) of systems (1) (with the same degree k and
dimension n) are affine equivalent with respect to affine group SL(n,R) (or SL(n,R)-equivalent) if there
exists a transformation Q € SL(n,R) such that p(Q)aM) = a(?).

Lemma 1 The elements of the set B are centro-affine invariants of the cubic differential system 5 which
are polynomially independent.

Proof. We shall prove that it is not possible to write any element of this family polynomially by means of
others, to this end, we use an algorithmic method which is based on reducing the polynomial decomposition
to a linear one(see [2, 6, 22]), for instance I, I; are polynomially independent according to their linear
decompositions (see Table 3), where A0,2,0,0) = {13, I}, obviously I cannot be generated from I; since
2aia? is a term of Iy but not of I?. In this case, it suffices to find a product with nonzero coefficients, which
do not come into any other invariants of B or their products, this proof is similar to the one in [19, p. 41-42].

Indeed, if one invariant of type T' = (dy, d1, d2, d3) can be generated by the others, it can be expressed as
a linear combination of the generating family A (g, q,,d,,ds), for example K = afale,eP® of type T' = (0,2,0)
can be expressed linearly by A 2,0y, hence K = 2det(a§»)j’i:1’2 =17 — 1.

Product | I

(a1)?
ajaj
aai

(a3)?

=

— O N =EN
= en.
o NN O

Table 3:

The same conclusion for {Ji2, J13} € A(0,0,0,3) and {Ja4, Jos, Jag} € A(0,0,2,2), Which is clear from table
4 that are polynomially independent. It follows easily that aJis + asJiz = 0 and Sy Jog + BaJos + B3Jog = 0
only when a; = as =0 and 8, = 82 = 83 = 0.

Product Jiz | Jia Product Jog | Jog | Jos
T 1 2 T2, 1 .2

a%ua%ma%m 1 0 (?11)1 a1112a2222 -1 0 0
a11107290722 | —2 | —3 a1102907110729 | —1 1] -1
a11102920712 | —1 3 a1107901110399 | —1 | =1 | —1

Table 4:



A. Hezzam and A. Turqui 311

For the remaining elements of B, the proof process is the same by refereeing to tables 6 and 7 in the
annexe. W

Lemma 2 If I;7 # 0, then the system (5) can be reduced by means of centro-affine transformations to the

form:
; 3
dyj 1 j 1\ P o\ ! .
o= 2 i1 120 0 () () T =12 (6)
I+h=0 717 h/"?/’
where

K'=0, K%ZIQO, Kll = I1117 — Iy, K212=Igl,
K? = I, Klll = I, K112=Il27—122, K121 = Iy,
K} =1, Kjpy=—Jso, Kloy=Ii7Js—Js1, Kiy=—Is,
K} =Tis, K3y =Js1, Kljp=Jsz—IirJy, K3y = I,
Ky = Ja5 — Ja7 — Jas — Jsg + Jao — Ju1 + Liz(J1n — 2Js + 2Jg + Jio),
K}y = 2Jur — 2Jas — Jag — Jso + 2J51 — 3J52 + 3J53 — Ja,
K1222 = —Js3,

K3y = Ja7 — Js5 + Jas + Jsg — Jao + Ja1 — LizJua.

Proof. Since I;7 # 0, we can consider the following matrix

2 1

Qi7(a) = ( G ) (7)

1 o 1«
[17aa1 Il7aoz2

One can easily check that det(Q17(a)) = 1, therefore the system (5) can be transformed by the centro-affine
transformation ¢/ = Q17(a)la’, i,j = 1,2, into a new system, where the new coefficients are given by [20]

h l

1
1 _ i iki 05
QWA 1992 = b ssie.s [0 x ] 0¥ en, (8)
hoti 1 ti 17 1=1 j=1
1 h l
2 _ B ) i ik ]
P17)011.1 22,3 =TT 9B Sbida.dy [T e %% x []a®,

h times [ times

where [ +h =0,1,2,3 and h,l=0,1,2,3. 4 '
The proof is completed by expressing the elements I{L; J _1p(Q 117)aJ11 199 9 as a polynomial function

htimes lItimes

of the family B. For instance, choosing the element I p(Q17)at;, = aqaaagrazkagslepqe

I.127p(Q17)a%22 = aaaﬁa%agqagaqqu, which are obtained from (8) at h = 2,1 = 1 and h = 1,1 = 2 Respec-
tively and

rsskl and

ITp(Q17)aTay, Itrp(Qu7)atys € A2y = {1177, IirJs, L7 J5, Jas} -

Now by using the method developed in[6], we can easily express these elements as a linear combination of
A(2,0,2,1) (see table 5)
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Product LizJ7 | J33 11270(@17)6&12 11271)(@17)@%22
(al)Q(ah)Qahz 1 1 0 -1
(al)Q(ah)Qa%zz 1 0 -1 0
(ai)zaila?aill -1 -1 0 1
(a1)2a%1a%2a%12 -1 1 2 -1
(a')?ajiaizaiy 2 2 0 -2

Table 5:

It is easy to check that: I3,p(Qi7)ai s = Jzs — Ii7J7 = Kiy5 and I5p(Q17)atyy = —J33 = Kisy.
Similarly, we obtain other elements expressions, for [ + h =0,1,2,3, h,1 =0,1,2,3 we find

hti—1 . . )
117 ! p(Q17)a]11..1 29.9 = K’ 11.122.2, 0 = 1,2
h times [ times h times [ times

which concludes the proof. m

Lemma 3 If Jy # 0, then the system (5) can be reduced by means of centro-affine transformations to the
form:
j 3
dy’ 1 j N
— = T 122 9 W) (), G =12 (9)
l+h=0 Y4 S~

h times 1 times
where
1_ 2 _ 1_ 2 _ 1
H" =0, H3 =Js2, Hi=I~hJy—Jia, Hiz = JsJ15 — 5J2J30,

H?=Jy, Hjy=1In, Hiy=IitJs—Jss, Hiy=JsJs+ 35102,
H3 = Ji4, Hipy = —Jso, Hiyy =Ji = Js5, Hiyy = 3Jad30 — JaJrs,
H} =TIy, Hy=Jss, Hf=J1Js+ 3hsto, Hiy = Jidsa+ LJadss,

1
Hiyy = §J2(JZ — Js5) — JuJ34),
1
HY, = —JyJs + JuJ7 — 5121J2,
1
H1211 = ZJ22J30 — Ju(Jadis + Ja(Jr2 + J13)),

1
H? = Jy(Jag — Jo1 + Jaz) + §J2([17J4 — J32).

Proof. The proof of this lemma is almost the same as that of Lemma 2. Since J4 # 0, it suffices to consider
the matrix of centro-affine transformations:

a2 _al

Qa(a) = ( 5 B ) ;
iaaaﬁal J%la’aaﬁoa

clearly det (Q4(a)) = 1. In the same manner, by applying the formula of centro-affine transformations, for

l+h=0,1,2,3 and h,l = 0,1, 2,3 we obtain

h l
1
1 _ i Ai ik &
PQUa 1929 = F50h g [0 Ran ™ < ][] ",
N~ 4 i=1 j=1

h times [ times

h !
1 A
2 — B i\ Biki &
AQ:AT1.192.3 = FrFT® Gai®h . sndrda. [[a%ayiane™ < [T a".
e 4 i=1 j:l

h times [ times
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The proof is completed by expressing these elements as polynomial function of the family B, which lead
to the systems 9

i . .
Ty 0(Qa)ay {99 9 =H11.122.2-

h times I times h times I times

forl+h=0,1,2,3and h,1=0,1,2,3and j=1,2. m

Lemma 4 If J; # 0, then the system (5) can be reduced by means of centro-affine transformations to the
form:

dy’ 5 1 ; h r.
- ) Jh+‘j71'Ff1..122..2 ()" (), =12 (10)
I+h=0 Y7 [ gt

h times 1 times

where
Fi = Jig— Jir — Jis + Jig + Joo — 171, F' = Iz,

Fl = Lpdi+ IiJr — Jig + Jiz + Jis — Jig — Jog, F? = Jy,
Fly = Ja(Jio + Jin — Js) — %122J27 Fy = —14,
F2, = Jy(2Jg — Jg — J11) + %JQ(IQQ - 1127), F), = Iy,
Fay = Y0203 — J3 (1o + Jis) — Jodudrs, FE = JiJs+ 26sdo,
Fly = Jss — Jsg — Jag + Jss + Jsg — Jao + Jaz — 1711,

F3y = —Jas + Jag + Jar — Jag — Jag + Jao — Jao + L1z J11,

1
F2 = Jy(Jag + Joz — Jo1) + §J2(I17J4 — J32),
) 1 3 1 1
Fii = J4(§(J43 + 3Jua — Jus + JoJ7) — Jug — ZJ3(J5 — J7) — Li7(Jis + ngz)) + §J2J56;
1 1 1
Fiyp = J4(§(J24 — Jos) — Jog — Joy — Jog + Jog) — §J2J33,
1 3 1 1
Flog = 2(Jss — J57 + Js9 — Je1) + L17(Ja6 + Jor + Jag — Jog — §J24 - §J25) — Joo + 5125J2,

Foy = Jag + Jso — 2Ju7 + 2Jus — 2J51 + 350 — 3J53 + Jsa,

1 3 1 1
Flo = Ju(Jus + §(J45 — Jug — 3Jua) + ZJS(J5 — J7) + Li7(Jis + §J12)) - §J2J56,

1 1
FLy = Ju(Jag + Jor + Jog — Jag + §(J25 — Joa)) + §J2(J33 — Li7J7),

F2222 = J7(2J9 —2Jg + J10) + 2(J57 — Js8 — J59 + J@l)

1 1
+Jo0 + T17(J29 — Jog — Jo7 — Jog + §(J25 +3J24)) — 5125J2-

Proof. Since J7; # 0, it suffices to consider the matrix of centro-affine transformations

[e3

asy ass
Q7(a):<1 o B L oaB ),

. 1 o
770% 0031 F-0%A0 50
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we see immediately that det(Q7(a)) = 1, by the centro-affine transformations formula we obtain:

h l
1 )
1 _ a i g AN Biki Vi w;d;
PQNaY 1900 = Fp0aih s || o™ e x [Tl e,
h times I times ’ i=1 j=1
1 h !
2 . a B % g A Bik; Vi Wil
PQNIT1122.2 = Frrr9 o st [Ta adi s, % x ] b, e,
~—~— 7 i=1 j=1

h times [ times

forl+h=0,1,2,3 and h,l =0,1,2,3. By expressing these elements as polynomial function of B yields

TP p(Qr) e, =F11.1922.2,

h times [ times h times I times

forl+h=0,1,2,3, h,1=0,1,2,3 and j = 1,2, which leads to the system (10). m
Theorem 2 The following statements hold:

1) Two planar cubic differential systems S(a")) and S(a®) such that Il(é).lﬁ) #0 are SL(2,R)— equiv-
alent if, and only if,

h+j—1 . h+j—1 )
2 0 _ (W @
(57) K%Y 199 9 = (117 K11 1922
S~ S~

h times 1 times h times [ times

2) Two planar cubic differential systems S(a™) and S(a®) such that Jil).Jf) # 0 are SL(2,R)-
equivalent if, and only if,

hti—1 htj—1

(2) a _ (4D (2)
(J4 ) H'Y{ 199,90 = (J4 ) H’Y{ 1922
S~ S~

h times 1 times h times 1 times

8) Two planar cubic differential systems S(aM)) and S(a®) such that Jél).,]g) # 0 are SL(2, R)—equivalent
if, and only if,

h+j—1 . h+j—1 .
(2) (1) _ (0 (2)
(J7 ) F1{ 19222 = (J7 ) FY{ 122,25
(gt T~ ~

h times 1 times h times 1 times

foralll+h=1,2,3, h,1=0,1,2,3.

Proof. Let S(a)) and S(a®) be two planar cubic differential systems such that I} I{2) £ 0. We assume
S(aM) and S(a®) are SL(2,R)—equivalent (i.e. p(Q)aV) = a® for some Q in SL(2,R)), because the
expressions _
(h)"" 7 K7 111 92,9
S

h times [ times

are centro-affines invariants for [ +h =1,2,3;h,l = 0,1, 2,3, then, it is clear that

h+j—1 h+j—-1 .
(2) 5 (1) _ (D) §(2)
(117) K91 19222 = (117) K 119222 (11)
h times [ times h times [ times

In the same way, we prove the sufficient condition in the cases (2) and (3). Conversely, if we have two planar
cubic differential systems S(a!)) and S(a®) such that Il(;).ll@ # 0 and satisfy the equalities (11), then by
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denoting Q'Y (i =1,2) the matrix Q7 (a”) associated with the system S(a?)), the equalities (11) mean
that

1 2
p(Q)a® = p(Q)a®

therefore,
p((@9) "aW)a = o((@) ) (@) e
(CORICEIEE

= p(Iy)a?, (Iz denotes the identity matrix of order 2)
(2)
a'?.

—1

Hence, the systems S(a(!)) and S(a®) are SL(2, R)—equivalent by the transformation (Qg?) 517) Sim-

ilar proof for the case (2) (Resp. (3)) shows that the systems S(a))) and S(a®) are SL(2,R)—equivalent
-1 —1

by the transformation ( 512)) Qfll) (Resp. ( (72)> (71)). |

4 Minimal Rational Basis of Cubic Polynomial Differential Sys-
tems

In this section, we shall deduce the minimal rational bases associated with the normal forms which have
been constructed in the previous section.

Definition 6 ([3/) A set S of GL(n,R)—invariants is called a rational on M C C(n, k,R) basis of invariants
for system (1) with respect to the group GL(n,R) if any invariants of system (1) with respect to the group
GL(n,R) can be expressed as a rational function of elements of the set S. And a rational basis on M C A
of invariants for system (1) with respect to a group GL(n,R) is called minimal if by the removal from it of
any comitant it ceases to be a rational basis.

Theorem 3 The following statements hold:
1) The set of GL(2,R)-invariants
Iy, 1y, Iz, Ing, Io1, 126, 1o, Ioo, Jg, Jo, J1o,
Bi = J11, J30, J31, J33, Ju, J7, I35, J37, J3s, J39,
Jao, Ja1, Juar, Jug, Jag, Js0, Js51, J52, J53, Jsa

is a minimal rational basis of the GL(2,R)-invariants of system (5) on

M = {a €C(2,3,R); 17 # 0}

2) The set of GL(2,R)-invariants

B, = Ja, Je, L1, J2, J34, J55, J30, J15, 11, J14, J1, J12,
J13, Jo, I1g, J7, 117, J32, Jo1, Joz, Jo3, J32, J55

is a minimal rational basis of the GL(2,R)-invariants of system (5) on

M ={a€C(2,3,R); Jy #0}.
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3) The set of GL(2,R)-invariants

I, 1y, Iy, In7, Ihg, 122, 125, J1, J2, J4, Js, J7, J11, Js, Jo, J10, J11,
J12, J13, J15, J16, J17, J18, J19, J20, Jo1, Jo2, J23, Joa, Jos, Jag, Jov,
Jag, Jog, J30, J32, J33, I35, J36, J37, J38, J39, Jao, Ja2, Juz, Jua, Jus,
Ja6, Jaz, Jus, Jag, J50, Js1, Js2, 53, Js4, I56, 57, Js85 J59, Jeo, Je1

Bs =

is a minimal rational basis of the GL(2,R)-invariants of system (5) on

M ={aeC(2,3,R); J; £0}.

Proof. Let us consider a planar cubic differential systems S(a) such that I17 # 0 and Q17 the matrix defined
by (7). From Lemma 2 the linear transformation y = Q172 can brought system (1) to the normal form (6).
Now if F' (a) is a GL(2,R)—invariant of system (1) then by using the fact that det (Q17) = 1 we obtain

1 .
F(p(Qir)a) = F [ 5= K 11,1 22.2 (@) o | = F(a).
117 —~—

h times [ times

Which means that any invariant can be expressed as a rational function of elements of the set B;. By lemma
1, the elements of B; are polynomially independents, thus the set B; is a minimal rational basis of the
GL(2,R)-invariants of system (5) on

M ={a €C(2,3,R); 17 #0}.

In the same way, we can prove the case (2) and (3). m
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5 Annexe

On the Affine Equivalence and Minimal Rational Bases

Table 6: A minimal polynomial basis of center-affine invariants of

cubic differential systems

Invariant Expression (do, i}’llzl; ds) Product Cofficient
Jy = agal, P (0,1,0,1) aiaiy 1
Jo = aamagqsqus”s (0,0,0,2) a111a32 2
Js = af,.al, Pl (0,0,0,2) 322011 2
Jy = aaaZa;yaB (2,0,0,1) (?1)2‘1%11 1
Js = a%al a} Pl (1,0,1,1) atal,a3y; -1
Jo = a“a?iiaivzgm (1,0,1,1) a'af; a3y 1
Jr = aaag azaquq (1’ 0,1, 1) ala§2a%11 -1
Jg = awaéraﬁqsepqa (0,0,2,1) aj1a15a15: -1
Jo = aapa’ﬁwa,@qsgpqs (0’ 0,2, 1) a%lagﬂl%lz -1
Jio = ag,al,al,ePe" (0,0,2,1) (a11)?a3s, 1
Ji = amaf,,«aaqs&pq& (0,0,2,1) 110320711 1
Ji3 = 055, 00,,0,5 677" " (0,0,0,3) (aiy1)?azs, 1
Jiu=a aﬁagaéa (2,1,0,1) (a 1)2‘@‘1%22 1
Jis = aaaﬁazg a5y P! (2,0,0,2) (a')?aj;ais 1
Jig = a®agal a%aqqu (1,1,1,1) a'aiazyaq gy -1
Jo =a aﬁ% ,yngpq (1,1,1,1) a'atazeais, -1
Jo1=a aéﬁ a%r iqsgpqE (1,0,1,2) a'afyat;pa3s, -1
Jog = a® aﬁpa75T aqs€pq€ (1,0,1,2) a'a3yat;aigg 1
Joz = a“al) awqaig@pq& (1,0,1,2) a'aiaat;; a1y —2
Jor = agpagr%qkaislgpqsm et (0,0,2,2) (a11)?aspats -1
Jog = ?kafpalsla%aqs”%”e“ (0,0,2,2) (a11)%a112019 1
Jag = ag, %kaqsla'yﬁagpqgmgkl (0,0,2,2) (a11)%a111039 1
J3o = a aﬁ(ﬂa alEpg (4,0,0,1) (a')*a?yy 1
J31 =a aﬁa'ya(m Zﬁw (3,0,1,1) (a')?a3qai;y 1
J3o = a%ad’a¥al 5(15&5 (3,0,1,1) (a') a%la%m 1
Js3 =a aﬁa’y agpaﬁaqepq (2,0,2,1) (a')?(a1p)?atyy -1
Jae=a aﬁa%pagrq 5579 (2,0,0,3) (a')?a1120311035: -1
Ju = aaaﬁéa aBT b oEPIE™ (1,0,3,1) a?(a3y)®as0, 1
Jaz = a%alsaj, aﬂr hqs€Ple™ (1,0,3,1) a'aiy(a3y)aiys -1
Jag = a®a als af, ab, ePlems et (1,0,1,3) a'a}paii5a711a30: 2
Ji6 = a0}, a, 5,05 0k e e (1,0,1,3) a’aiyaiy1a112030) 1
Jyg = ag‘vaﬁﬂagpafkaf;sl&:pqs”ekl (0,0,4,1) (a1;)3a3,a355 1
J50 = aéaﬂaawaﬁkagslemsmekl (0,0,4,1) (a}))3a3qalyy -1
Joa = aji505,a5, a%yay e lem et (0,0,4,1) (a1p)*aiyy -1
Js5 = a aﬁa'ya‘;ai“;yagm (4,0,0,2) (a')*at;1afa 1
Js6 = a“aParay, at al 5 e (3,0,1,2) (a')’alzaiipaiy -1
Jeo = a“a’géawaﬁrazqkaaslepqemakl (1,0,3,2) a?(aty)®adgaisy 1
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Product Js¢ | J35 | J37 | J39 | Jao | Jss
atad,(a?))?al,y 1 0 0 0 0 0
a’aljai,a? a3, 1 1 0 0 0 0
ata?(a3,)?%a3,y 1 1 1 0 0 0
atad,(a?)?a3qy 0 0 0 1 1 0
a~ 390710550719 0 0 0 1 1 1
a®(ady)?a3ya3y; 0 0 0 1 2 1
Product J18 J19 J17 Product J45 J44
a’ayatraty 1 1 1 a'aiyai15a19507 1, 2 0
aiazailaém 0 0 1 a®a,a115012,071 0 1
G707G920799 0] 1] —1 a’afya115(aipy)” —1] -1
Product J53 J51 J50 J47 J48
(a11) azz; 1 1 1 1 1
(a11)’a3pa3saiy; | —1 0 0 0 0
(a2)*(afy)?atys 0 1 0 0 0
(a}5)’a3pai1; 0 0] -1 0] -1
(a11)*af3a35 1 0 0 1 1
Product Je1 | Jss | Js7 | JIs9 | Jeo
a*(ajy)’atypaty L =17 =1 L =1
a*(agy)aialyrafys 1 0 0 1 0
a'(azy)’ai;(atyy)? 0 0 1 1 0
a'(aly)*a3aiipadyy | —1 0 0 0] —1
a'(ai,)’aty;afy 1 1 1 L] —1

Table 7:
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