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Abstract

In [16], M. Özdemir defined a new non-commutative number system called hybrid numbers. In this
paper, we consider the generalized Fibonacci hybrid numbers and investigate some basic properties of
these hybrid numbers by using the Binet’s formula. We also get some generalized identities for (p, q)-
Fibonacci hybrid numbers and (p, q)-Lucas hybrid numbers.

1 Introduction

The most famous generalization of the set of complex numbers is the set of quaternions. In 1843, William
Hamilton described the set of quaternions

H = {a+ bi+ cj+ dk : i2 = j2 = k2 = ijk = −1}

and James Cockle defined coquaternions (split quaternions)

H = {a+ bi+ cj+ dk : i2 = −1, j2 = k2 = ijk = 1}

in 1849 (see [5]). Quaternions and coquaternions are used to define 3D Euclidean and Lorentzian rotations,
respectively. A set of split quaternions is non-commutative and contains zero divisors, nilpotent elements, and
nontrivial idempotents (see [15, 17]). Previous studies have examined the geometric and physical applications
of split quaternions, which are required in solving split quaternionic equations [7].
In particular, Fibonacci and Lucas quaternions cover a wide range of interests in modern mathematics as

they appear in the comprehensive works of [11, 12]. Furthermore, quaternions with third-order sequences are
studied in [2, 3, 4]. For example, the Fibonacci quaternion denoted by QF,n, is the n-th term of the sequence
where each term is the sum of the two previous terms beginning with the initial values QF,0 = i+ j+2k and
QF,1 = 1 + i+ 2j+ 3k. The well-known Fibonacci quaternion QF,n is defined as

QF,n = Fn + iFn+1 + jFn+2 + kFn+3 (1)

and the Lucas quaternion is defined as QL,n = Ln + iLn+1 + jLn+2 + kLn+3 for n ≥ 0, where Fn and Ln
are n-th Fibonacci and Lucas number, respectively.
Ipek [13] studied the (p, q)-Fibonacci quaternions QF,n which is defined as

QF,n = pQF,n−1 + qQF,n−2, n ≥ 2 (2)

with initial conditions QF,0 = i + pj + (p2 + q)k, QF,1 = 1 + pi + (p2 + q)j + (p3 + 2pq)k and p2 + 4q > 0.
If p = q = 1, we get the classical Fibonacci quaternion QF,n [8]. If p = 2q = 2, we get the Pell quaternion
QP,n = Pn + iPn+1 + jPn+2 + kPn+3 (see [6]), where Pn is the n-th Pell number.
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The well-known Binet’s formulas for (p, q)-Fibonacci quaternion and (p, q)-Lucas quaternion, see [13], are
given by

QF,n =
ααn − ββn

α− β and QL,n = ααn + ββn, (3)

where α, β are roots of the characteristic equation t2 − pt − q = 0, and α = 1 + αi + α2j + α3k and
β = 1 + βi+ β2j+ β3k. We note that α+ β = p, αβ = −q and α− β =

√
p2 + 4q.

The generalized Fibonacci quaternion Qw,n is defined recently by Halici and Karataş in [10] as Qw,0 =
a+ bi+(pb+ qa)j+((p2+ q)b+pqa)k, Qw,1 = b+(pb+ qa)i+((p2+ q)b+pqa)j+((p3+2pq)b+ q(p2+ q)a)k
and Qw,n = pQw,n−1+ qQw,n−2, for n ≥ 2 which we call the generalized Fibonacci or Horadam quaternions.
So, each term of the generalized Fibonacci sequence {Qw,n}n≥0 is called generalized Fibonacci quaternion.
The Binet formula for generalized Fibonacci quaternion Qw,n, see [10], is given by

Qw,n =
Aααn −Bββn

α− β , (4)

where A = b − aβ, B = b − aα, and α, β are roots of the characteristic equation t2 − pt − q = 0, α =
1 + αi + α2j + α3k and β = 1 + βi + β2j + β3k. If a = 0 and b = 1, we get the classical (p, q)-Fibonacci
quaternion QF,n. If a = 2 and b = p, we get the (p, q)-Lucas quaternion QL,n. For more details and identities
of this type of numbers, see [19].
Recently, Özdemir [16] defined a new generalization of complex, hyperbolic and dual numbers. In this

generalization, the author gave a system of such numbers that consists of all three number systems together.
This set was called hybrid numbers, denoted by K, is defined as

K =
{
z = a+ bi+ cε+ dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0, h2 = 1,

ih = −hi = ε+ i

}
. (5)

Two hybrid numbers are equal if all their components are equal, one by one. The sum of two hybrid numbers
is defined by summing their components. Addition operation in the hybrid numbers is both commutative
and associative. Zero is the null element. With respect to the addition operation, the inverse element of z
is −z, which is defined as having all the components of z changed in their signs. This implies that, (K,+)
is an Abelian group.
The hybridian product is obtained by distributing the terms on the right as in ordinary algebra, preserving

that the multiplication order of the units and then writing the values of followings replacing each product
of units by the equalities i2 = −1, ε2 = 0, h2 = 1 and ih = −hi = ε+ i. Using these equalities we can find
the product of any two hybrid units. For example, let’s find iε. For this, let’s multiply ih = ε+ i by i from
the left. Thus, we get iε = 1− h. If we continue in a similar way, we get the following multiplication table.

Table 1: The multiplication table for the basis of K.
× 1 i ε h
1 1 i ε h
i i −1 1− h ε+ i
ε ε 1 + h 0 −ε
h h −(ε+ i) ε 1

The table 1 shows us that the multiplication operation in the hybrid numbers is not commutative. But
it has the property of associativity. The conjugate of a hybrid number z = a+ bi+ cε+ dh, denoted by z, is
defined as z = a− bi− cε− dh as in the quaternions. The conjugate of the sum of hybrid numbers is equal
to the sum of their conjugates. Also, according to the hybridian product, we have zz = zz. The real number

C(z) = zz = zz = a2 + (b− c)2 − c2 − d2

is called the character of the hybrid number z = a + bi + cε + dh. The real number
√
|C(z)| will be called

the norm of the hybrid number z and will be denoted by ‖z‖K.
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In this study, we consider the generalized Fibonacci hybrid numbers. We give the generating functions and
Binet formulas for these numbers. Moreover, the well-known properties e.g. Cassini and Catalan identities
have been obtained for these numbers.

2 Generalized Fibonacci Hybrid Numbers

We define the n-th (p, q)-Fibonacci and (p, q)-Lucas hybrid numbers, respectively, by the following recurrence
relations

HFn = Fn + Fn+1i+ Fn+2ε+ Fn+3h (6)

and
HLn = Ln + Ln+1i+ Ln+2ε+ Ln+3h, (7)

where Fn and Ln are the n-th (p, q)-Fibonacci and (p, q)-Lucas numbers defined by

Fn = pFn−1 + qFn−2, F0 = 0, F1 = 1

and
Ln = pLn−1 + qLn−2, L0 = 2, L1 = p,

respectively. Here {i, ε,h} satisfies the multiplication rule given in the Table 1.
By some elementary calculations we find the following recurrence relations for the (p, q)-Fibonacci and

(p, q)-Lucas hybrid numbers from (6) and (7):

pHFn + qHFn−1 = p(Fn + Fn+1i+ Fn+2ε+ Fn+3h) + q(Fn−1 + Fni+ Fn+1ε+ Fn+2h)
= (pFn + qFn−1) + (pFn+1 + qFn)i+ (pFn+2 + qFn+1)ε+ (pFn+3 + qFn+2)h
= Fn+1 + Fn+2i+ Fn+3ε+ Fn+4h
= HFn+1

and similarly HLn+1 = pHLn + qHLn−1, for n ≥ 1 (see [18]).
In this paper, following Halici and Karataş [10], we define the generalized Fibonacci hybrid numbers as

HJn = pHJn−1 + qHJn−2, n ≥ 2, (8)

where HJ0 = a+ bi+ (pb+ qa)ε+ ((p2+ q)b+ pqa)h and HJ1 = b+ (pb+ qa)i+ ((p2+ q)b+ pqa)ε+ ((p3+
2pq)b+ q(p2 + q)a)h.
So, each term of the generalized Fibonacci hybrid sequence {HJn}n≥0 is called generalized Fibonacci

hybrid number. Furthermore, if a = 0 and b = 1, we get the (p, q)-Fibonacci hybrid number HFn. If a = 2
and b = p, we get the (p, q)-Lucas hybrid number HLn.
Generating functions for the generalized Fibonacci hybrid numbers are given in the next theorem.

Theorem 1 ([18]) The generating function for the generalized Fibonacci hybrid number is

∞∑
r=0

HJrtr =

{
a+ bi+ (pb+ qa)ε+ ((p2 + q)b+ pqa)h
+t((b− pa) + qai+ qbε+ (pqb+ q2a)h)

}
1− pt− qt2 . (9)

The next theorem gives the Binet formulas for the generalized Fibonacci hybrid numbers in a different
way than Theorem 1 in [18].

Theorem 2 For any integer n ≥ 0, the n-th generalized Fibonacci hybrid number is

HJn =
Aααn −Bββn

α− β , (10)

where A = b − aβ, B = b − aα, and α, β are roots of the characteristic equation t2 − pt − q = 0, α =
1 + αi + α2ε + α3h and β = 1 + βi + β2ε + β3h. If a = 0 and b = 1, we get the (p, q)-Fibonacci hybrid
number HFn. If a = 2 and b = p, we get the (p, q)-Lucas hybrid number HLn.
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Proof. For the Eq. (10), we have

αHJn+1 + qHJn = α(Jn+1 + Jn+2i+ Jn+3ε+ Jn+4h) + q(Jn + Jn+1i+ Jn+2ε+ Jn+3h)
= (αJn+1 + qJn) + (αJn+2 + qJn+1)i+ (αJn+3 + qJn+2)ε+ (αJn+4 + qJn+3)h.

From the identity αJn+1 + qJn = αn(αb+ qa), we obtain

αHJn+1 + qHJn = ααn(αb+ qa). (11)

Similarly, we have
βHJn+1 + qHJn = ββn(βb+ qa). (12)

Subtracting Eq. (12) from Eq. (11) gives

(α− β)HJn+1 = Aααn+1 −Bββn+1,

where A = b−aβ, B = b−aα and α, β are roots of the characteristic equation t2− pt− q = 0. Furthermore,
α = 1 + αi+ α2ε+ α3h and β = 1 + βi+ β2ε+ β3h. So, the theorem is proved.
There are three well-known identities for generalized Fibonacci numbers, namely, Catalan’s, Cassini’s,

and d’Ocagne’s identities (see [1]). The proofs of these identities are based on Binet formulas. We can obtain
these types of identities for generalized Fibonacci hybrid numbers using the Binet formula for HJn. Then,
we require αβ and βα. These products are given in the next lemma.

Lemma 3 We have
αβ = HL0 − (q3 + pq − q + 1) + q(α− β)(HF0 − ω), (13)

and
βα = HL0 − (q3 + pq − q + 1)− q(α− β)(HF0 − ω), (14)

where ω = (1− p)i− qε+ (p2 + q + 1)h and α− β =
√
p2 + 4q.

Proof. From the definitions of α and β, and using i2 = −1, ε2 = 0, h2 = 1 and ih = −hi = ε+ i in Table
1, we have

αβ = (1 + αi+ α2ε+ α3h)(1 + βi+ β2ε+ β3h)

= 2 + (α+ β)i+ (α2 + β2)ε+ (α3 + β3)h− 1 + αβ(−1 + α+ β + α2β2)
−αβ(α2 − β2)i− αβ(α2 − β2 − α2β + αβ2)ε+ αβ(α− β)h

= 2 + pi+ (p2 + 2q)ε+ (p3 + 3pq)h− (q3 + pq − q + 1)
+q(α− β)(pi+ (p+ q)ε− h)

= HL0 − (q3 + pq − q + 1) + q(α− β)(pi+ (p+ q)ε− h)
= HL0 − (q3 + pq − q + 1) + q(α− β)(HF0 − ω),

where ω = (1 − p)i − qε + (p2 + q + 1)h and the final equation gives Eq. (13). The other identity can be
computed similarly.
This lemma gives us the following useful identity:

αβ + βα = 2(HL0 − (q3 + pq − q + 1)). (15)

Catalan’s identities for generalized Fibonacci hybrid numbers are given in the next theorem.

Theorem 4 For any integers m ≥ r ≥ 0, we have

HJ 2m −HJm+rHJm−r = −AB(−q)mF−r
{
(HL0 − (q3 + pq − q + 1))Fr

+q(HF0 − ω)Lr

}
, (16)

where A = b − aβ, B = b − aα, ω = (1 − p)i − qε + (p2 + q + 1)h and Fr, Lr are the r-th (p, q)-Fibonacci
and (p, q)-Lucas numbers, respectively.
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Proof. From the Binet formula for generalized Fibonacci hybrid numbers HJm in (10) and (α−β)2 = p2+4q,
we have

(p2 + 4q)
(
HJ 2m −HJm+rHJm−r

)
=

(
Aααm −Bββm

)2 − (Aααm+r −Bββm+r) (Aααm−r −Bββm−r)
= AB(−q)m−r

(
αβα2r + βαβ2r − (−q)r

(
αβ + βα

) )
.

We require Eqs. (13) and (14). Using this equations, we obtain

HJ 2m −HJm+rHJm−r

=
AB(−q)m−r
p2 + 4q

{
(HL0 − (q3 + pq − q + 1))(α2r + β2r − 2(−q)r)

+q(α− β)(HF0 − ω)(α2r − β2r)

}
=

AB(−q)m−r
p2 + 4q

{
(HL0 − (q3 + pq − q + 1))(L2r − 2(−q)r)

+q(p2 + 4q)(HF0 − ω)F2r

}
.

Using the identity (p2 + 4q)F2r = L2r − 2(−q)r gives

HJ 2m −HJm+rHJm−r = AB(−q)m−r
{
(HL0 − (q3 + pq − q + 1))F2r

+q(HF0 − ω)F2r

}
,

where Lr, Fr are the r-th (p, q)-Lucas and (p, q)-Fibonacci numbers, respectively. With the help of the
identities F2r = FrLr and F−r = −(−q)−rFr, we have Eq. (16). The proof is completed.
Taking r = 1 in the Theorem 4 and using the identity F−1 = 1

q , we obtain Cassini’s identities for
generalized Fibonacci hybrid numbers.

Corollary 5 For any integer m, we have

HJ 2m −HJm+1HJm−1 = AB(−q)m−1
{
(HL0 − (q3 + pq − q + 1))

+pq(HF0 − ω)

}
, (17)

where A = b− aβ, B = b− aα and ω = (1− p)i− qε+ (p2 + q + 1)h.

The following theorem gives d’Ocagne’s identities for generalized Fibonacci hybrid numbers.

Theorem 6 For any integers r and m, we have

HJrHJm+1 −HJr+1HJm = (−q)mAB
{
(HL0 − (q3 + pq − q + 1))Fr−m

+q(HF0 − ω)Lr−m

}
, (18)

where Fr, Lr are the r-th (p, q)-Fibonacci and (p, q)-Lucas numbers, respectively.

Proof. Using the Binet formula for the generalized Fibonacci hybrid numbers gives

(p2 + 4q)(HJrHJm+1 −HJr+1HJm)
=

(
Aααr −Bββr

) (
Aααm+1 −Bββm+1

)
−
(
Aααr+1 −Bββr+1

) (
Aααm −Bββm

)
= (−q)mAB(α− β)

(
αβαr−m − βαβr−m

)
.

We require the Eqs. (13) and (14). Substituting these into the previous equation, we have

HJrHJm+1 −HJr+1HJm

=
(−q)m
α− β AB

{
(HL0 − (q3 + pq − q + 1))(αr−m − βr−m)
+q(α− β)(HF0 − ω)(αr−m + βr−m)

}
= (−q)mAB

(
(HL0 − (q3 + pq − q + 1))Fr−m + q(HF0 − ω)Lr−m

)
.
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The second identity in the above equality, can be proved using Lr−m = αr−m + βr−m and Fr−m =
αr−m−βr−m

α−β . This proof is completed.
In particular, if m = r − 1 in this theorem and using the identity L1 = p, we obtain Cassini’s identities

for generalized Fibonacci hybrid numbers. Now, taking m = r in the Theorem 6 and using the identities
F0 = 0 and L0 = 2, we obtain the next identity.

Corollary 7 For any integer r ≥ 0, we have

HJr+1HJr −HJrHJr+1 = 2(−q)r+1AB(HF0 − ω), (19)

where A = b− aβ, B = b− aα and ω = (1− p)i− qε+ (p2 + q + 1)h.

After deriving these three famous identities, we present some other identities for the (p, q)-Fibonacci and
(p, q)-Lucas hybrid numbers.

Theorem 8 For any integers n, r and s, we have

HLn+rHFn+s −HLn+sHFn+r = 2(−q)n+rFs−r(HL0 − (q3 + pq − q + 1)). (20)

Proof. The Binet formulas for the (p, q)-Lucas and (p, q)-Fibonacci hybrid numbers give

(α− β)(HLn+rHFn+s −HLn+sHFn+r)
=

(
ααn+r + ββn+r

) (
ααn+s − ββn+s

)
−
(
ααn+s + ββn+s

) (
ααn+r − ββn+r

)
= (αβ)n(αsβr − αrβs)(αβ + βα).

Using Eqs. (13) and (14), we have

HLn+rHFn+s −HLn+sHFn+r = 2(−q)n+rFs−r(HL0 − (q3 + pq − q + 1)).

The proof is completed.
After deriving these famous identities, we present some other identities for the generalized Fibonacci

hybrid numbers. In particular, when using the Binet formulas to obtain identities for the (p, q)-Fibonacci
and (p, q)-Lucas hybrid numbers, we require α2 and β2. These products are given in the next lemma.

Lemma 9 We have
α2 = (HL0 + rp,q) + (α− β)(HF0 + sp,q) (21)

and
β2 = (HL0 + rp,q)− (α− β)(HF0 + sp,q), (22)

where rp,q = −1 + p
2 (F6 + 2F3 − F2) + q(F5 + 2F2 − F1), sp,q = 1

2 (F6 + 2F3 − F2) and Fn is the n-th
(p, q)-Fibonacci number.

Proof. From the definition of α and using i2 = −1, ε2 = 0,h2 = 1, ih = −hi = ε + i in Table 1 and
αn = Fnα+ qFn−1 for n ≥ 1, we have

α2 = (1 + αi+ α2ε+ α3h)(1 + αi+ α2ε+ α3h)

= 2(1 + αi+ α2ε+ α3h) + (α6 + 2α3 − α2 − 1)
= 2 + 2αi+ (2pα+ 2q)ε+ ((2p2 + 2q)α+ 2pq)h) + (α6 + 2α3 − α2 − 1)
= 2 + pi+ (p2 + 2q)ε+ (p3 + 3pq)h+ (α− β)(i+ pε+ (p2 + q)h)

+((F6α+ qF5) + 2(F3α+ qF2)− (F2α+ qF1)− 1)
= (HL0 + rp,q) + (α− β)(HF0 + sp,q),

where rp,q = −1+ p
2 (F6+2F3−F2)+ q(F5+2F2−F1) and sp,q =

1
2 (F6+2F3−F2) and the final equation

gives Eq. (21). The other can be computed similarly.
We present some interesting identities for (p, q)-Fibonacci hybrid numbers, (p, q)-Lucas hybrid numbers

and generalized Fibonacci hybrid numbers.
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Theorem 10 For any integer n ≥ 0, we have

HL2n −HF2n =
{

p2+4q−1
p2+4q (HL0 + rp,q)L2n + (p

2 + 4q − 1)(HF0 + sp,q)F2n
+ 2(p2+4q+1)(−q)n

p2+4q (HL0 − (q3 + pq − q + 1)).

}
. (23)

Proof. Using the Binet formulas for the (p, q)-Fibonacci and (p, q)-Lucas hybrid numbers, we obtain

(p2 + 4q)(HL2n −HF2n) = (p2 + 4q)
(
ααn + ββn

)2 − (ααn − ββn)2
= (p2 + 4q − 1)(α2α2n + β2β2n) + (p2 + 4q + 1)(αβ)n(αβ + βα).

Substituting Eqs. (13) and (14) into the last equation, we have

(p2+4q)(HL2n−HF2n) = (p2+4q−1)(α2α2n+β2β2n)+2(p2+4q+1)(αβ)n(HL0− (q3+pq− q+1)). (24)

Then, using Eqs. (21) and (22), we obtain

α2α2n + β2β2n = (α2n + β2n)(HL0 + rp,q) + (α− β)(HF0 + sp,q)(α2n − β2n). (25)

Substituting Eq. (25) into Eq. (24) gives Eq. (23).

Theorem 11 For any integers m ≥ n ≥ 0, we have

HFnHJm −HJmHFn = 2(−q)n+1Jm−n(HF0 − ω), (26)

where ω = (1− p)i− qε+ (p2 + q + 1)h and Jn = Aαn−Bβn
α−β is the n-th generalized Fibonacci number.

Proof. The Binet formulas for the (p, q)-Fibonacci hybrid numbers and generalized Fibonacci hybrid num-
bers give

(p2 + 4q)(HFnHJm −HJmHFn) =
(
ααn − ββn

) (
Aααm −Bββm

)
−
(
Aααm −Bββm

) (
ααn − ββn

)
= (Aαmβn −Bαnβm)(αβ − βα).

Using Eqs. (13) and (14), we have

HFnHJm −HJmHFn =
2q(αβ)n

p2 + 4q
(Aαm−n −Bβm−n)(α− β)(HF0 − ω)

= −2(−q)n+1Jm−n(HF0 − ω),

where ω = (1 − p)i − qε + (p2 + q + 1)h and Jn is the n-th generalized Fibonacci number defined by
Jn = Aαn−Bβn

α−β . So, the theorem is proved.
Taking m = n in the Theorem 11 and using J0 = a, we obtain the next identity.

Corollary 12 For any integer n ≥ 0, we have

HFnHJn −HJnHFn = 2a(−q)n+1(HF0 − ω), (27)

where A = b− aβ, B = b− aα and ω = (1− p)i− qε+ (p2 + q + 1)h.

3 Conclusions

There are differences between the generalized Fibonacci hybrid numbers and the coeffi cient generalized
Fibonacci quaternions. For example, the usual coeffi cient generalized Fibonacci quaternionic units are i2 =
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j2 = k2 = ijk = −1 whereas the generalized Fibonacci hybrid units are i2 = −1, ε2 = 0, h2 = 1 and
ih = −hi = ε+ i.

In this work, we have examined a new type of numbers, which are non-commutative. We named this
number set as generalized Fibonacci hybrid numbers because it is a linear combination of well-known complex,
hyperbolic and dual Fibonacci numbers. We have given the relation ih = −hi = ε + i between the units
{i, ε,h} of these three number systems, and we have seen the algebraic consistency of this relation. Thus,
we have obtained some properties of the generalized Fibonacci hybrid numbers.

Acknowledgment. The author would like to thank the referees for their comments that helped me to
improve this article.
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