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Abstract

We first give the definition and parametrization of a helicoidal surface in Euclidean n-space. Af-
terwards, we investigate the parametrizations of loxodromes on the helicoidal surfaces as well as the
rotational surfaces in this space.

1 Introduction

Loxodromes correspond to the curves which intersect all meridians at the same angle on the Earth’s surface.
Loxodromes are often used in navigation because of the fact that they don’t need a change of course. Noble
[1] found the equations of loxodromes on the rotational surfaces in Euclidean 3-space. Also, Babaarslan and
Yayli [3] investigated the equations of loxodromes on the helicoidal surfaces which are a natural generalization
of rotational surfaces in Euclidean 3-space. In Euclidean 4-space the loxodromes on the helicoidal surfaces
were studied by Babaarslan [4].
The aim of the present paper is to find the parametrizations of loxodromes on the helicoidal surfaces as

well as the rotational surfaces in Euclidean n-space by using similar differential geometry methods used in
previous papers.

2 Preliminaries

Euclidean n-space is denoted by the symbol Rn and it is defined as the set of all n-tuples of real numbers
written by x = (x1, . . . , xn). Rn is a R-vector space and the Euclidean inner product is defined as

< x, y >= x1y1 + . . .+ xnyn. (1)

This allows us to define the length of vectors in Rn by the norm

‖x‖ =
√
〈x, x〉, (2)

as well as introducing the angle ϕ between two vectors x, y 6= 0 is given by the formula

cosϕ =
〈x, y〉
‖x‖ ‖y‖ . (3)

Let α : I → Rn be a regular curve in Rn, that is α′(t) 6= 0 holds everywhere. The arc-length parameter
of α is introduced by

s(t) =

∫ t

t0

‖α′(t)‖ dt. (4)

Also, α is a unit speed curve if ‖α′(s)‖ = 1 for all s ∈ I ⊂ R (for more details, see [5]).
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The definition of a helicoidal surface in Rn can be given as follows.
Let α : I → H be a regular curve in a hyperplane H in Rn and P be a (n − 2)-plane in H. If α is

rotated about P (an abstract object), then the resulting surface is a rotational surface in Rn. Also, when α
is rotated about P , it is simultaneously translated along a line l which is parallel to P so that the speed of
the translation is proportional to the speed of rotation, then the resulting surface is a helicoidal surface in
Rn (for the definition in R4, see [2]).

Let (x1, . . . , xn) be the coordinate system and {e1, . . . , en} be the standard orthonormal base of Rn. We
consider the hyperplane H = span{e1, e3, . . . , en}, the (n − 2)-plane P = span{e3, . . . , en} and the axis
l = span{en}. Thus, the rotation which leaves P invariant is given by the following rotational matrix

cos v − sin v 0 . . . 0
sin v cos v 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1

 . (5)

Now, we consider the profile curve α(u) = (x1(u), 0, x3(u), . . . , xn(u)) in H, where u ∈ I and x1(u) > 0.
As a result, the parametrization of a helicoidal surface M is given by

x(u, v) =


cos v − sin v 0 . . . 0
sin v cos v 0 . . . 0
0 0 1 . . . 0
...

...
...
. . .

...
0 0 0 . . . 1




x1(u)
0

x3(u)
...

xn(u)

+ λv

0
0
0
...
1

 ,

that is
x(u, v) = (x1(u) cos v, x1(u) sin v, x3(u), . . . , xn−1(u), xn(u) + λv) , (6)

where λ ∈ R+. When xn is a constant function, the helicoidal surface is called right helicoidal surface. Also,
if we take λ = 0, then we have the rotational surfaces in Rn.

3 The Parametrizations of Loxodromes

We consider the helicoidal surface M which is parametrized by (6). We assume that the profile curve α is a
unit speed curve. The tangent plane to M at the point p = x(u, v) can be defined by span{xu, xv}.
Thus, the coeffi cients of first fundamental form of M are given by

E = 1, F = λx′n(u) and G = x21(u) + λ
2. (7)

Notice that the constant parameter curves of M are orthogonal if and only if M is either a right helicoidal
surface or a rotational surface.
Suppose that λ2

(
1− x′2n (u)

)
+ x21(u) > 0, that is, M is a regular surface.

The first fundamental form (or line element) of M is written as

ds2 = du2 + 2λx′n(u)dudv +
(
λ2 + x21(u)

)
dv2. (8)

Also, the arc-length of any curve on M between u1 and u2 is given by

s =

∣∣∣∣∣∣
∫ u2

u1

√
1 + 2λx′n(u)

dv

du
+
(
λ2 + x21(u)

)(dv
du

)2
du

∣∣∣∣∣∣ . (9)
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We now consider the curve σ(t) = x (u(t), v(t)) which lies on M . By using (3), at the point p, where the
loxodrome intersects the meridians at a constant angle ϕ, we have the following formula

cosϕ =
du+ λx′n(u)dv√

du2 + 2λx′n(u)dudv +
(
λ2 + x21(u)

)
dv2

. (10)

If we rearrange this formula, then we obtain the following differential equation of loxodrome on the helicoidal
surface in Rn (

cos2 ϕ
(
λ2 + x21(u)

)
− λ2x′2n (u)

)(dv
du

)2
− 2λ sin2 ϕx′n(u)

dv

du
= sin2 ϕ, (11)

whose general solution is

v(u) =

∫ u

u0

2λ sin2 ϕx′n(u) + ε
√
sin2 2ϕ

(
x21(u)− λ

2(x′2n (u)− 1)
)

2 cos2 ϕ
(
λ2 + x21(u)

)
− 2λ2x′2n (u)

du, (12)

where ε ∈ {−1, 1}.
Thus, the parametrizations of loxodromes on the helicoidal surfaces as well as the rotational surfaces in

Rn can be given by the following theorems:

Theorem 1 The parametrization of loxodrome on a helicoidal surface in Rn is

σ(u) = (x1(u) cos v(u), x1(u) sin v(u), x3(u), . . . , xn−1(u), xn(u) + λv(u)) , (13)

where v(u) is given by (12).

Theorem 2 The parametrization of loxodrome on a rotational surface in Rn is

γ(u) = (x1(u) cos v(u), x1(u) sin v(u), x3(u), . . . , xn−1(u), xn(u)) , (14)

where v(u) = ε tanϕ
∫ u
u0

du
x1(u)

.

Also, we have

Corollary 3 The arc-length of the loxodrome on a right helicoidal surface or a rotational surface in Rn is
given by

s =

∣∣∣∣u2 − u1cosϕ

∣∣∣∣ . (15)

We note that the notable applications of loxodromes on the helicoidal surfaces in R3 and R4 respectively
can be found in [3] and [4].

4 Conclusion

We investigate the parametrizations of loxodromes on the helicoidal surfaces as well as the rotational surfaces
in Euclidean n-space. The next time, we will study space-like and time-like loxodromes on the non-degenerate
helicoidal surfaces in Minkowski n-space.
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