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Abstract

In the market for financial derivatives, the most important problem is the so-called option valuation

problem or in a few words: the problem of computing a fair price for a given option. Analytical solutions

of American options problems are seldom available, but such derivatives of financial markets can be

priced by numerical methods.

For the numerical solution of the American option valuation problem, we provide a script written in

MATLAB implementing an explicit finite difference scheme. Our main contribute is the definition of a

posteriori error estimator for the American options pricing which is based on Richardson’s extrapolation

theory. This error estimator allows us to find a suitable grid where the computed solutions, both the

option price field variable and the free boundary position, satisfies a prefixed error tolerance.

1 Introduction

In the market for financial derivatives, the most important problem is the so-called option valuation problem
or in a few words: the problem of computing a fair price for a given option. An American call (put) option
is a contract written on an underlying asset and gives the holder the right to buy (sell) the asset for a pre-
specified price or strike price on or before a pre-specified date also indicated as maturity. Unlike European
options where the holder can exercise the option only on the maturity date, the possibility of early exercise
makes the pricing of American options a problem in stochastic optimization. While a closed-form solution
for the price of European options is derived in the celebrated work by Black and Scholes [3] and by Merton
[27], there exists no analogous result for American options. The reason can be explained as follows: while the
governing differential equation is still the one obtained by Black and Scholes [3], McKean [21] and Merton
[26] show that the price of an American option satisfies boundary conditions governed by a boundary that
is not known a priori and needs to be computed as part of the solution itself. Such problems are called
free-boundary problems. In particular, the American call option problem is a free boundary problem defined
on a finite interval. On the other hand, the American put option problem is a free boundary problem defined
on a semi-infinite interval so that it is a non-linear problem complicated by a boundary condition at infinity.
Unfortunately, the vast majority of listed options in financial markets are American-style. Nonetheless,
much progress has been made in developing approaches which approximate the value of such options. These
approaches bifurcate into either numerical or analytic approximations.

Within analytical approximations, MacMillan [25] and Barone-Adesi and Whaley [2] defined a quadratic
approximation for American put option. These methods are not convergent and have trouble pricing long-
maturity options accurately. To correct this problem, Ju and Zhong [22] develop an approximation based
on the method proposed in Barone-Adesi and Whaley. While this improved method prices long-maturity
options more accurately, it is still not convergent. Johnson [20] used an interpolation scheme to price the
American put option, Geske and Johnson [17] derived a valuation formula expressed in terms of a series
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of compound-option functions for the same reason, Bunch and Johnson [7] propose a modified two-point
Geske-Johnson approach. Carr and Faguet [8] view put options as the limit of a sequence of perpetual
option values which are subject to default risk, and use this view to deriving approximations for the price of
an option. More recently, Zhu [35] derives a semi-closed form solution for the price of the option as a Taylor
series expansion consisting of infinite terms, but requiring thirty terms for an accurate option price.

Within numerical approximations, the most popular methods for pricing American option can be classified
to lattice method, Monte Carlo simulation, and finite difference method. The lattice method is conceptually
simple and widely implemented for evaluating American options. This method was first introduced by Cox
et al. [11], and its convergence was proved by Amin and Khanna [1]. Fu [15, 16] applied Monte Carlo method
along with gradient-based optimization techniques to price American style options. The application of a finite
difference method to price American options was initiated by Brennan and Schwartz [4, 5] and Schwartz [32].
Jaillet et al. [19] proved the finite difference method convergence. A front-fixing finite difference method was
proposed by Wu and Kwok (1997), Nielsen et al. [28], and Company et al. [9] to compute option prices. The
front-fixing method utilizes a change of variables to transform the free boundary problem into a nonlinear
problem on a fixed domain. Nielsen et al. [28] also propose a penalty method to price American put options,
where the unknown boundary is removed by adding a penalty term, again leading to a nonlinear problem
posed on a fixed domain. Finally, comparison of different numerical methods are reported by Broadie and
Detemple [6] and by Geske and Shastri [18].

In this paper, we list a script written in MATLAB implementing a finite difference scheme for the
numerical solution of the American option models of financial markets. We implemented both the method
defined by Company et al. [9] and the method developed by Nielsen et al. [28] and found that the first
method implementation is more efficient than the second method. Our main contribute is the definition of
a posteriori error estimator for the American options pricing which is based on Richardson’s extrapolation
theory. This error estimator allows us to find a suitable grid where the computed solution, both the option
price field variable and the free boundary position, satisfies a prefixed error tolerance.

2 American Put Option

Let us suppose that at time t the price of a given underlying asset is S. We consider here the following
mathematical model for the value P = P (S, τ ) of an American put option to sell the asset:

∂P

∂τ
=

1

2
σ2S2 ∂2P

∂S2
+ rS

∂P

∂S
− rP on 0 ≤ τ ≤ T , S∗(τ ) < S < ∞ ,

P (S, 0) = max(E − S, 0) , S∗(0) = E ,

lim
S→∞

P (S, τ ) = 0 , (1)

P (S∗(τ ), τ ) = E − S∗(τ ) ,
∂P

∂S
(S∗(τ ), τ ) = −1 ,

P (S, τ ) = E − S , 0 ≤ S < S∗(τ )

where τ = T − t denotes the time to maturity T , S∗(τ ) is a free boundary, that is the unknown early exercise
boundary, σ, r and E are given constant parameters representing the volatility of the underlying asset, the
interest rate and the exercise price of the option, respectively.

To fix the free boundary we apply the dimensionless new variables

x = ln
S

Sf (τ )
, Sf =

S∗(τ )

E
, p(x, τ) =

P (xSf (τ ), τ )

E
, (2)

see Wu and Kwok [33]. From the variables transformation defined by (2) follows that Sf (τ ) is mapped on
the fixed line x = 0, 0 ≤ p(x, τ) ≤ 1 and 0 ≤ Sf (τ ) ≤ 1. By using (2), the put option problem (1) can be
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rewritten as follows

∂p

∂τ
=

1

2
σ2 ∂2p

∂x2
+

(

r −
σ2

2

)

∂p

∂x
− rp +

1

Sf (τ )

dSf

dτ
(τ )

∂p

∂x
, (3)

p(x, 0) = 0 for 0 ≤ x , Sf (0) = 1 , (4)

lim
x→∞

p(x, τ) = 0 , (5)

p(0, τ ) = 1 − Sf (τ ) ,
∂p

∂x
(0, τ ) = −Sf (τ ) , (6)

that has to be solved on the domain defined by 0 ≤ τ ≤ T and 0 < x < ∞.

3 An Explicit Finite Difference Scheme

To solve the problem (3-6) numerically, we introduce a truncated boundary x∞, which is a suitable large
value where it would be convenient to impose the asymptotic boundary condition. In other words, we replace
the asymptotic boundary condition (5) with the side condition

p(x∞, τ ) = 0 . (7)

For the choice of x∞ and the accuracy of the related numerical solution, we can refer to the study by Kangro
and Nicolaides [23]. On the other hand, the boundary condition at infinity can be enforced exactly by using
a non-standard finite difference scheme, and this has been shown for the numerical solution of the so-called
perpetual American put option in [12].

Next, by setting an integer J and a positive value µ, we define the step-sizes

∆x =
x∞

J
, ∆t = µ∆x2 , (8)

the integer N

N =

⌈

T

∆t

⌉

, (9)

where d·e : IR+ → IN is the ceiling function which maps a real number to the least integer that is greater
than or equal to that number. Therefore, µ is the grid-ratio

µ =
∆t

∆x2
. (10)

So that, within the finite domain, we can introduce a mesh of grid-points

xj = j∆x , tn = n∆t , (11)

for j = 0, 1, . . . , J and n = 0, 1, . . . , N .
We would like to define a numerical scheme that allows us to compute the grid values

pn
j ≈ p(xj, tn) , (12)

for j = 0, 1, . . . , J and n = 0, 1, . . . , N − 1, N and the free boundary values

Sn
f ≈ Sf (tn) , (13)

for n = 0, 1, . . . , N − 1, N . To this end let us consider the explicit finite difference scheme

pn+1

j − pn
j

∆t
=

1

2
σ2

pn
j−1 − 2pn

j + pn
j+1

(∆x)2
+

+

(

r −
σ2

2

)

pn
j+1 − pn

j−1

2∆x
+

Sn+1

f − Sn
f

∆tSn
f

pn
j+1 − pn

j−1

2∆x
− rpn

j (14)
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for j = 1, 2, . . . , J−1 and n = 0, 1, . . . , N−1. For our specific problem pn
j and Sn

f are given and our goal is to

compute pn+1

j and Sn+1

f . If we apply some simple algebra, then we can rewrite the explicit finite difference
scheme as follows

pn+1

j = apn
j−1 + bpn

j + cpn
j+1 +

Sn+1

f − Sn
f

∆tSn
f

pn
j+1 − pn

j−1

2∆x
, (15)

for j = 2, 3, . . . , J − 1 and n = 0, 1, . . . , N − 1, where

a =
µ

2

[

σ2 −

(

r −
σ2

2

)

∆x

]

,

b = 1 − µσ2 − r∆t, (16)

c =
µ

2

[

σ2 −

(

r +
σ2

2

)

∆x

]

.

Now, we have to take into account the side conditions. From the two initial conditions (4), we obtain

p0
j = 0 , S0

f = 1 , (17)

for j = 0, 1, . . . , J . From the boundary conditions (7), we get

pn
J = 0 , (18)

for n = 0, 1, . . . , N . From the two boundary conditions (6), using a central finite difference formula, we
derive

pn
1 − pn

−1

2∆x
= −Sn

f , pn
0 = 1− Sn

f , (19)

where x−1 = −∆x is a fictitious point out of the computational domain. Moreover, by considering the
governing differential equation (3) at x0 = 0, τ > 0 and taking into account the side conditions (6) one gets
a new boundary condition:

σ2

2

∂2p

∂x2
(0+, τ ) +

σ2

2
Sf (τ ) − r = 0 , (20)

see Wu and Kwok [33], Zhang and Zhu [34] or Kwok [24, p. 341] , and its central finite difference discretization

σ2

2

pn
−1 − 2pn

0 + pn
1

∆x2
+

σ2

2
Sn

f − r = 0 . (21)

Now, we can eliminate the value of pn
−1 from equations (19) and (21) to get

pn
1 = 1 +

r∆x2

σ2
−

(

1 + ∆x +
∆x2

2

)

Sn
f . (22)

If we evaluate the numerical scheme (15) for j = 1 and take into account (22) for n = n + 1, then the free
boundary Sn+1

j can be defined by

Sn+1

f = dnSn
f . (23)

for n = 0, 1, . . . , N − 1, where

dn =

1 +
r∆x2

σ2
−

(

apn
0 + bpn

1 + cpn
2 −

pn
2 − pn

0

2∆x

)

pn
2 − pn

0

2∆x
+

(

1 + ∆x +
∆x2

2

)

Sn
f

. (24)

Taking into account all the formulae defined above we get the following algorithm:
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1. Input σ, r, E, T , J , µ and x∞;

2. Define the grid (xj , ∆x, tn, ∆t) according to equations (8) and (11);

3. for j = 0, 1, 2, . . . , J do p0
j = 0 end, set S0

f = 1;

4. compute a, b and c according to (16);

5. for n = 0, 1, . . .N − 1, compute dn according to (24), compute Sn+1

f according to (23) and apply the
free boundary conditions

pn+1

0 = 1 − Sn+1

f ,

pn+1

1 = 1 +
r∆x2

σ2
−

(

1 + ∆x +
∆x2

2

)

Sn+1

f ,

compute

an = a −
Sn+1

f − Sn
f

2∆xSn
f

, cn = c −
Sn+1

f − Sn
f

2∆xSn
f

and for j = 2, 4, . . . , J − 1 compute the values of pn+1

j according to

pn+1

j = anpn
j−1 + bpn

j + cnpn
j+1 .

end, set pn
J = 0, end.

The implementation of this algorithm in MATLAB has been used to get the numerical results reported
below. The script file is listed in the Appendix.

4 Positivity, Monotonicity and Stability

In this section, we recall the theoretical results that make the explicit difference scheme suitable for doing
numerical studies of the American put option. For the sake of simplicity, let us define the numerical solution
vector at time level tn as pn = (pn

0 , pn
1 ,. . . , pn

J)T .

Lemma 1 (Company et al. [9]) If ∆t and ∆x verify the two inequalities

∆x ≤
σ2

|r − σ2/2|
∆t , r 6= σ2/2, (25)

∆t ≤
∆x2

σ2 + r∆x2
. (26)

then the coefficients a, b and c are non-negative. If r = σ2/2, then the non-negativity of these coefficients is
verified under the condition (26).

These two inequalities follow from positivity preserving considerations related to the explicit finite difference
scheme. The theoretical framework is similar to the one used by Friedrichs [14] to study positivity preserving
finite difference schemes for the advection equation, see also Fazio and Jannelli [13]. Moreover, the coefficients
of pn+1

i , for i = j − 1,j,j + 1, in our difference scheme (15) might be regarded, in the limit for ∆t → 0,
as probability values. In fact, they sum up to 1 − r∆t and by imposing their positivity we get the two
inequalities (25)-(26).

Theorem 1 (Company et al. [9]) Let {pn
j , Sn

f } be the computed numerical solution and dn be defined by
equations (24), then under hypothesis of the Lemma 1, for sufficiently small values of ∆x, we have:

• {Sn
f } is positive and non-increasing monotone for n = 0, 1, . . . , N ;
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• the vectors pn have positive components for n = 0, 1, . . . , N ;

• the vectors pn are non-increasing monotone with respect to the j for each fixed n = 0, 1, . . . , N .

As far as the stability of the explicit finite difference scheme is concerned we can introduce the definition:
the numerical scheme is said to be ‖·‖∞-stable if, for every mesh in the computational domain [0, x∞]×[0, T ],
there exists a positive constant C such that

‖pn‖∞ ≤ C for n = 0, 1, . . . , N, (27)

where C is independent on ∆t, ∆x and n, see Company et al. [10].

Theorem 2 (Company et al. [9]) Under the hypothesis of Theorem 1 the explicit finite difference scheme
for the fixed domain problem (3-6) is ‖ · ‖∞-stable.

5 A Posteriori Error Estimator

For a scalar U of interest, either a value of the solution pn
j or a free boundary value Sn

f , the numerical error
e can be defined by

e = u − U , (28)

where u is the exact, usually unknown, value. Of course, we have several different sources of errors: dis-
cretization, round-off, and so on. Discretization errors are due to our replacement of a continuous problem
with a discrete one and these errors can be reduced by reducing the discretization parameters, enlarging the
value of N in our case. Round-off errors are due to the utilization of floating-point arithmetic to implement
the algorithms available to solve the discrete problem. This kind of error can be reduced by using higher pre-
cision arithmetic, double or, when available, fourth precision. Several other kinds of errors can be considered
but are all beyond the scope of this study. However, when the numerical error is caused prevalently by the
discretization error and in the case of smooth enough solutions the discretization error can be decomposed
into a sum of powers of the inverse of N

u = UN + C0

(

1

N

)p0

+ C1

(

1

N

)p1

+ C2

(

1

N

)p2

+ · · · , (29)

where C0, C1, C2, . . . are coefficient that depend on u and its derivatives, but are independent on N ,
and p0, p1, p2, . . . are the true orders of the discretization error, see Schneider and Marchi [31] and the
references quoted therein. Each pk is usually a positive integer with p0 < p1 < p2 < · · · and all together
they constitute an arithmetic progression of ratio p1 − p0. The value of p0 is called the asymptotic order or
the order of accuracy of the method or of the numerical value UN . By replacing into equation (29) N = Ng

and N = Ng+1 and subtracting, to the second obtained equation the first times (1/q)p0 , q = Ng+1/Ng, we
get the first extrapolation formula

u ≈ Ug+1 +
Ug+1 − Ug

qp0 − 1
, (30)

that has a leading order of accuracy equal to p1. This type of extrapolation is due to Richardson [29,
30]. Taking into account equation (30) we can conclude that the error estimator by a first Richardson’s
extrapolation is given by

er =
Ug+1 − Ug

qp0 − 1
, (31)

where p0 is the order of the numerical method used to compute the numerical solutions. Hence, (31) gives
the real value of the numerical solution error without knowledge of the exact solution. In comparison with
(31) a safer error estimator can be defined by

es = Ug+1 − Ug . (32)
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Of course, p0 can be estimated with the formula

p0 ≈
log(|Ug − u|) − log(|Ug+1 − u|)

log(q)
, (33)

where u is again the exact solution (or, if the exact solution is unknown, a reference solution computed with
a suitable large value of N), and both u and Ug+1 are evaluated at the same grid-points of Ug .

Within the above framework, in order to improve the numerical accuracy by using only a small number
of grid-nodes, we can generalize (30) introducing the following repeated extrapolation formula

Ug+1,k+1 = Ug+1,k +
Ug+1,k − Ug,k

qpk − 1
, (34)

where g ∈ {0, 1, 2, . . . , G − 1}, k ∈ {0, 1, 2, . . . , G − 1}, q = Ng+1/Ng is the grid refinement ratio, and pk is
the true order of the discretization error. The formula (34) is asymptotically exact in the limit as N0 goes
to infinity if we use uniform grids. We notice that to obtain each value of Ug+1,k+1 requires two computed
solutions U in two adjacent grids, namely g +1 and g at the extrapolation level k. For any g, the level k = 0
represents the numerical solution of U without any extrapolation. We recall that the theoretical orders of
accuracy of the numerical values Ug,k, with N = Ng and k extrapolations, verify the relation

pk = p0 + k(p1 − p0) , (35)

where this equation is valid for k ∈ {0, 1, 2, . . . , G − 1}.

6 Numerical Results

We introduce a numerical test for the finite difference schemes defined below. To this end, we consider the
American put option problem (3-6) with the following parameters:

r = 0.1 , σ = 0.2 , E = T = 1 . (36)

First of all, we are interested to define a suitable value of the truncated boundary x∞. Then, we investigate
numerically how the choice of the value of x∞ influences the numerical solution. To take a simple approach,
we can monitor the final free boundary computed values SN

f . Therefore, in Table 1 we compare sample

numerical results of the free boundary location SN
f at t = T obtained for different values of grid-steps, but

always with µ = 20, and by setting x∞ = 1, x∞ = 2 and x∞ = 4. Motivated by the results reported in

x∞ N = 10 N = 20 N = 40

1 0.867635453443530 0.865575022242718 0.864386633629751

2 0.867635453443530 0.865575022242718 0.864386633629751

4 0.867635453443530 0.865575022242718 0.864386633629751

Table 1: Free boundary location at t = T .

Table 1 we decided to use x∞ = 1. This can be contrasted with the preliminary numerical results obtained
by the MATLAB implementation of the explicit finite difference scheme developed by Nielsen et al. [28]. In
fact, in that case we were forced to use x∞ = 4.

Figure 1 shows an unstable computation. For the sake of clarity, in Figure 1 we display only the initial
condition and the numerical solution at t = T , that is the last time iterate. As usual, the instability manifest
itself with large oscillations between positive and negative values. Therefore, as far as our explicit finite
difference scheme is concerned, we have to find a compromise between accuracy and stability. Of course,
from now on, the chosen grid-spacings are defined in order to verify the stability inequalities (25)-(26).
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Figure 1: Instability for N = 100, µ = 27 and x∞ = 1: on the left pN
j versus xj, on the right, Sn

f versus tn.

From the results listed in Table 1 we realize that, fixed a value of the truncated boundary x∞, the
computed values of SN

f for different values of the grid-steps are in agreement only for the first two decimal
places. Then, we decided to improve the numerical accuracy by performing a mesh refinement. Moreover,
we applied repeated Richardson’s extrapolation to improve the numerical accuracy. Let us recall that the
explicit difference scheme is first order in time and second order in space both for the field variable and the
free boundary value, i.e. the truncation error is of the order O(∆t2) + O(∆t∆x2). We will use this result
below when we perform a mesh refinement keeping constant the grid-ratio, i.e. µ, so that we end up with
second-order truncation error Tn

j = O(∆t2) in time and, therefore, the global error is first-order, that is the
p0 value defined above is equal to one. We remark that in our case the sequence of qpk , for k = 0, 1, . . . , is
given by 4, 16, 64, 256, 1024, . . . , that is q = 4 and pk = k +1, for k = 0, 1, . . . . In Table 2 we report sample
numerical results for the benchmark value SN

f . Within the same table, we report the results obtained by

N Ug,0 Ug,1 Ug,2 Ug,3 Ug,4

5 0.871621

20 0.865575 0.863560

80 0.863700 0.863075 0.863043

320 0.863071 0.862861 0.862847 0.862844

1280 0.862859 0.862788 0.862783 0.862782 0.862782

5120 0.862788 0.862764 0.862763 0.862762 0.862762

Table 2: Richardson’s repeated extrapolations with x∞ = 1 for the free boundary value SN
f at t = T . The

next extrapolated value is U5,5 = 0.862762.

repeated Richardson’s extrapolations. From the results listed in Table 2 we can conclude that our benchmark
value is SN

f ≈ 0.862762. This value can be compared with the values SN
f ≈ 0.86222 computed by Nielsen et

al. [28] and SN
f ≈ 0.8628 found by Company et al. [9].

Next, we indicate how to use the error estimator defined by equation (31), or alternatively by equation
(32). Let us assume that our goal is to solve the American put option problem with a given tolerance ε, where
0 < ε � 1. To this end we should solve the given problem twice, for two grids defined with given values of
Jg = J and Jg+1 = 2J of space intervals but for the same value of the grid-ratio µ. The corresponding time
intervals Ng and Ng+1 verify the relation q = Ng+1/Ng . Hence we can apply (component-wise) to pn and to
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Sn
f the error estimator formula (31), or (32). Then, we can verify whether

‖er(p
n)‖∞ ≤ ε |er(S

n
f )| ≤ ε for n = 1, 2, . . . , N . (37)

If the two inequalities (37) hold true, for n = 1, 2, . . . , N , then we can accept the numerical solution computed
on the grid defined by Jg+1 and Ng+1 , otherwise we have to increase these two integers and repeat the
calculations.

Figure 2 shows the error estimator results computed by setting ε = 0.001. We fixed µ = 20 and started
with J0 = 5 and J1 = 10 repeating the computation by doubling the number of spatial grid-intervals if
the required accuracy was not achieved. Our algorithm stopped when J7 = 640 that for µ = 20 means
N7 = 20480.
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Figure 2: Numerical estimated errors er(p
n) and er(S

n
f ) versus tn.

For the sake of completeness, in Figure 3 we plot pN
j versus xj and Sn

f versus tn, these results were
obtained by the finite difference scheme with N = 320 and µ = 20.

From the numerical results shown in Figure 2 we can easily realize that the greatest errors are found within
a few time steps. This suggests that a better accuracy can be achieved, without the use of Richardson’s
extrapolation, by developing an adaptive version of the explicit finite difference scheme. This adaptive
version should start with a small value of ∆t and increase the time step-size approximatively soon after T/5.

7 Appendix

Here we list the basic algorithm written in MATLAB. The script file is called APOefds.m and it can be easily
modified to apply our a posteriori error estimator defined by equation (31).

% APOefds.m

% solve APO equation on [0,xinf] by forward in time

% and central finite difference in space

% J+1 space steps in x, N+1 time steps in t

% mi = k/h^2, where k is time step, h is space step

clear all; help APOefds

r = .1; % parameters



454 Richardson’s Extrapolation and a Posteriori Error Estimator

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

p
jn
 ≈

 p
(x

j,t
n
)

0 0.2 0.4 0.6 0.8 1
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

t

S
fn
 ≈

 S
f(t

n
)

S
f

n
 of APO PDE with µ= 20

Figure 3: Numerical results: on the left pN
j versus xj , on the right, Sn

f versus tn.

T = 1; % Nielsen et al. 2002

sigma = .2;

E = 1;

xinf = 1; % truncated boundary

J = 80;

mi = 20

h = xinf/J

k = mi*h^2

N = ceil(T/k)

x = 0:h:xinf;

w = zeros(J+1,1); % set initial conditions

s(1) = 1;

t(1)=0;

A = .5*mi*(sigma^2-(r-.5*sigma^2)*h);

B = 1-mi*sigma^2-r*k;

C = .5*mi*(sigma^2+(r-.5*sigma^2)*h);

A1 = 1+r*h^2/sigma^2;

B1 = 1+h+.5*h^2;

for n=1:N %time loop

dp1 = .5*(w(3,1)-w(1,1))/h;

D = (A1-(A*w(1,1)+B*w(2,1)+C*w(3,1)-dp1))/(dp1+B1*s(n));

s(n+1) = D*s(n);

if (s(n+1)<0 | s(n+1)>1), break, end

w(1,2) = 1-s(n+1);

w(2,2) = A1-B1*s(n+1);

AM = A-.5*(s(n+1)-s(n))/(h*s(n));

CM = C+.5*(s(n+1)-s(n))/(h*s(n));

for j = 3:J %space loop

w(j,2) = AM*w(j-1,1)+B*w(j,1)+CM*w(j+1,1);

end

w(J+1,2) = 0;

w(:,1) = w(:,2);

t(n+1) = t(n)+k;
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end

plot(t,s,’LineWidth’,2.5);

axis([0 T .86 1]); grid

xlabel(’t’)

ylabel(’S_f^n \approx S_f(t_n)’)

title([’S_f^n of APO PDE with \mu= ’,num2str(mi)])

Of course, our algorithm can be made more complex that this essential one. For instance, as far as the
stability conditions (25)-(26) are concerned we can insert, after parameters and grid definitions, the script

Stab1 =sigma^2/(abs(r-.5*sigma^2))-h

Stab2 =h^2/(sigma^2+r*h^2)- k

if (Stab1<0 | Stab2<0), break, end

Moreover, in the implementation of the error estimator, we can stop the computation as soon as one of
the inequalities (37) is violated. This can be done by using the script

er(n+1) = abs((w2(1,1)-w(1,1))/3);

for j = 2:J+1

em = (w2(2*j-1,1)-w(j,1))/3;

er(n+1) = max(er(n+1),abs(em));

end

ers(n+1) = abs((s2(n+1)-s(n+1))/3);

if (er(n+1)>epsilon | ers(n+1)>epsilon), break, end
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