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Abstract

Let G be a simple graph with vertex set V (G) and edge set E(G). The geometric-arithmetic index

(GA index for short) of graph G is defined as GA(G) =
P

uv∈E(G)
2
√

dudv

du+dv
, where the summation extends

over all edges uv of G, and du denotes the degree of vertex u in G. Recently, Du et al. [On geometric
arithmetic indices of (molecular) trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math.
Comput. Chem. 66 (2011), 681–697] determined the first six maximum values for the GA indices of
bicyclic graphs. In this paper, we determine the n-vertex bicyclic graphs with the seventh and eighth
for n ≥ 9, the ninth, tenth, eleventh for n ≥ 10, the twelfth, thirteenth, fourteenth, fifteenth, sixteenth
for n ≥ 11, the seventeenth, eighteenth, nineteenth, twentieth, twenty-first, twenty-second, twenty-third,
twenty-forth and twenty-fifth for n ≥ 12 maximum GA indices.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). For u ∈ V (G), du denotes the degree of
vertex u in G. An n-vertex connected graph G is said to be a bicyclic graph if it possesses n + 1 edges. For
the notations and terminologies not mentioned here, please refer to [18].

Graph theory has provided the chemist with a variety of useful tools, one of which is the topological
indices [8]. Molecules and molecular compounds are often modeled by molecular graphs. Topological indices
of molecular graphs are one of the oldest and the most widely used descriptors in QSPR/QSAR research
[16].

The Randić index [15] is one of the most important topological indices having a lot of applications in
chemistry. For the results on Randić index, please refer [2, 6, 10].

Motivated by Randić index, Vukičević and Furtula [17] proposed a new topological index named the
geometric-arithmetic index (GA index for short) based on the end-vertex degrees of edges in a graph. The
GA index of graph G, denoted by GA(G), is defined as [17]

GA(G) =
∑

uv∈E(G)

2
√

dudv

du + dv

,

where the summation extends over all edges uv of G.
It is noted in [17] that the predictive power of GA index for several physico-chemical properties (boiling

point, entropy, enthalpy and standard enthalpy of vaporization, enthalpy of formation, acentric factor) is
somewhat better than the predictive power of the Randić connectivity index.

In [17], Vukičević and Furtula gave the lower and upper bounds for the GA index of graphs, and identified
the trees with the minimum and maximum GA indices, which are the star and the path, respectively. In [19],
Yuan et al. gave the lower and upper bounds for the GA index of molecular graphs in terms of the number
of vertices and edges. They also determined the n-vertex molecular trees with the minimum, the second
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minimum and the third minimum, as well as the second maximum and the third maximum GA indices. Du
et al. [9] and Husin et al. [12] presented a further ordering for the GA indices of trees and determined the
first fourteen maximum values. For more results on the mathematical properties of GA indices, please refer
to a recent survey [14] and papers [1, 4, 5, 7, 11, 13].

In [3], the authors collected all hitherto obtained results on the GA index of graphs. In particular, Du
et al. [9] determined the n-vertex bicyclic (molecular) graphs with the first for n ≥ 4, the second and the
third for n ≥ 6, and the fourth, the fifth and the sixth for n ≥ 8 maximum GA indices. In this paper, we
determine the n-vertex bicyclic graphs with the seventh and eighth for n ≥ 9, the ninth, tenth, eleventh
for n ≥ 10, the twelfth, thirteenth, fourteenth, fifteenth, sixteenth for n ≥ 11, the seventeenth, eighteenth,
nineteenth, twentieth, twenty-first, twenty-second, twenty-third, twenty-forth and twenty-fifth for n ≥ 12
maximum GA indices, and characterize the corresponding extremal graphs. This result was obtained by
combining the approach used by Du et al. [9] and Deng et al. [7].

2 Preliminary Results

Note that for an edge uv of a graph G, it holds that

2
√

dudv

du + dv

≤ 1

with equality if and only if du = dv. This fact will be used frequently in the proofs of our main results.
A pendant vertex is a vertex of degree one. A pendant edge is an edge incident with a pendant vertex.

A path u1u2 . . . ur in a graph G is said to be a pendant path at u1 if du1
≥ 3, dui

= 2 for i = 2, . . . , r − 1
and dur

= 1. An n-vertex connected graph is known as bicyclic if it has n + 1 edges.

Lemma 1 ([9]) If there are k pendant paths in an n-vertex bicyclic graph G, then

GA(G) ≤
(

2
√

6

5
+

2
√

2

3

)

k + n − 2k.

Let B1
1(n) be the set of bicyclic graphs obtained from Cn by adding an edge, where n ≥ 4. Let B2

1(n) be
the set of bicyclic graphs obtained by joining two vertex-disjoint cycles Ca and Cb with a+b = n by ad edge,
where n ≥ 6. Let B2(n) be the set of bicyclic graphs obtained from Ca = v0v1 . . . vn−1 with 4 ≤ a ≤ n − 2
by joining v0 and v2 by an edge, and attaching a path on n − a vertices to v1. Let B3

1(n) be the set of
bicyclic graphs obtained by joining two non-adjacent vertices of Ca with 4 ≤ a ≤ n − 1 by a path of length
n−a+1, where n ≥ 5. Let B3

2(n) be the set of bicyclic graphs obtained by joining two vertex-disjoint cycles
Ca and Cb with a + b < n by a path of length n − a − b + 1, where n ≥ 7. Let B4(n) be the set of n-vertex
bicyclic graphs obtained by attaching a path on at least two vertices to the two vertices of degree two of the
unique 4-vertex bicyclic graph, where n ≥ 8. Let B1

5(n) be the set of bicyclic graphs obtained from a graph
in B1

1(k) with k ≥ 5 or B2
1(k) with k ≥ 6 by attaching a path on n − k ≥ 2 vertices to a vertex of degree

two, whose two neighbors are of degree two and three, where n ≥ 7. Let B2
5(n) be the set of bicyclic graphs

obtained from a graph in B1
3(k) with k ≥ 5 or B2

3(k) with k ≥ 7 by attaching a path on n − k ≥ 2 vertices
to a vertex of degree two, whose two neighbors are both of degree three, where n ≥ 7. Let B6(n) be the
bicyclic graphs obtained from Cn−1 = v0v1 . . . vn−2 by joining v0 and v2 by an edge, and attaching a vertex
of degree one to v1, where n ≥ 5.

The following result was obtained in [9].

Theorem 1 ([9]) Among the set of n-vertex bicyclic graphs,

(i) the graphs in B1
1(n) for n ≥ 4 and the graphs in B2

1(n) for n ≥ 6 are the unique graphs with the maximum

GA index, which is equal to n − 3 + 8
√

6
5 ;
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(ii) for n ≥ 6, the graphs in B2(n) are the unique graphs with the second maximum GA index, which is

equal to n − 3 + 6
√

6
5 + 2

√
2

3 ;

(iii) the graphs in B1
3(n) for n ≥ 6 and the graphs in B2

3(n) for n ≥ 7 are the unique graphs with the third

maximum GA index, which is equal to n − 5 + 12
√

6
5 ;

(iv) for n ≥ 8, the graphs in B4(n) are the unique graphs with the fourth maximum GA index, which is

equal to n − 3 + 4
√

6
5

+ 4
√

2
3

;

(v) for n ≥ 8, the graphs in B1
5(n) or B2

5(n) are the unique graphs with the fifth maximum GA index, which

is equal to n − 5 + 2
√

6 + 2
√

2
3 ;

(vi) for n ≥ 8, the graphs in B6(n) are the unique graphs with the sixth maximum GA index, which is equal

to n − 2 + 4
√

6
5 +

√
3

2 .

3 Main Results

In this section, we present our main result. Let B̃n be the set of bicyclic graphs with n vertices and n + 1
edges. Assume dij denotes the number of edges connecting vertex of degree i with vertex of degree j.

The following four propositions will be used to prove our main result.

Proposition 1 Among the set of n-vertex bicyclic graph G with no pendant path, different from the types
of graphs described in Theorem 1(i) and (ii), and let B̃1

n = {G ∈ B̃n : d23 = 4, d22 = n− 3}. If G ∈ B̃1
n, then

GA(G) = n − 3 + 8
√

2
3

.

Figure 1: The unique bicyclic graph in Proposition 1 with n = 10 and GA(G) = 7 + 8
√

2
3 .

Proposition 2 Among the set of n-vertex bicyclic graph G with exactly one pendant path, different from
the types of graphs described in Theorem 1(ii), (v) and (vi),

(i) the graphs in B̃2
n = {G ∈ B̃n : d12 = 1, d23 = 7, d33 = 1, d22 = n − 8} are the unique graphs with the

maximum GA index, which is equal to n − 7 + 2
√

2
3

+ 14
√

6
5

;

(ii) the graphs in B̃3
n = {G ∈ B̃n : d13 = 1, d24 = 4, d33 = 2, d22 = n − 6} are the unique graphs with the

second maximum GA index, which is equal to n − 4 +
√

3
2 + 8

√
6

5 ;

(iii) the graphs in B̃4
n = {G ∈ B̃n : d12 = 1, d23 = 9, d22 = n − 9} are the unique graphs with the third

maximum GA index, which is equal to n − 9 + 2
√

2
3

+ 18
√

6
5

;

(iv) the graphs in B̃5
n = {G ∈ B̃n : d13 = 1, d23 = 6, d33 = 1, d22 = n − 7} are the unique graphs with the

fourth maximum GA index, which is equal to n − 6 +
√

3
2 + 12

√
6

5 ;

(v) the graphs in B̃6
n = {G ∈ B̃n : d12 = 1, d23 = 2, d24 = 3, d34 = 1, d22 = n− 6} are the unique graphs with

the fifth maximum GA index, which is equal to n − 6 + 8
√

2
3 + 4

√
3

7 + 4
√

6
5 ;



N. H. M Husin and R. Hasni 11

(vi) the graphs in B̃7
n = {G ∈ B̃n : d13 = 1, d23 = 8, d22 = n − 8} are the unique graphs with the sixth

maximum GA index, which is equal to n − 8 +
√

3
2 + 16

√
6

5 .

(vii) for all other graphs G, it holds that

GA(G) < n − 3 +
4
√

6

5
+
√

3.

Proof. Denote by k the number of pendant paths of length one in G. There are three possible cases.
Case 1. There is exactly one vertex in G of degree five, and all other vertices of G are of degree one or

two.
Case 2. There is exactly one vertex of degree four and one vertex of degree three in G, and all other

vertices of G are of degree one or two.
Case 3. There are exactly three vertices in G of degree three, and all other vertices of G are of degree

one or two.
Suppose that Case 1 holds. Clearly, 0 ≤ k ≤ 1. Then

GA(G) ≤
(√

5

3
− 2

√
2

3
− 2

√
10

7
+ 1

)

k + n + 5 − 2
√

2

3
− 10

√
10

7

≤ n + 5 − 2
√

2

3
− 10

√
10

7

< n − 3 +
4
√

6

5
+
√

3.

Suppose that Case 2 holds. Denote by v1 and v2 the two vertices of degree three and four, respectively.
Let Gk

1 be the graphs that the unique pendant path is attached to v1 and Gk
2 be the graphs that the unique

pendant path is attached to v2. Then we have the next two subcases.

• Case 2-1. Suppose that v1 and v2 are adjacent. Table 1 gives us the result.

Graphs k d12 d13 d14 d23 d24 d34 d22 GA values

Gk
1 0 1 0 0 2 3 1 n − 6 n + 0.72057

Gk
1 1 0 1 0 1 3 1 n − 5 n + 0.66399

Gk
2 0 1 0 0 2 3 1 n − 6 n + 0.7206

Gk
2 1 0 0 1 2 2 1 n − 6 n + 0.63495

Table 1: The connected bicyclic graphs and their GA values.

From Table 1, we can see that G0
1 ∪ G0

2 ∈ B̃6
n with GA(G) = n − 6 + 8

√
2

3 + 4
√

3
7 + 4

√
6

5 ≈ n + 0.72057.

For both G1
1 and G1

2, GA(G) < n − 3 + 4
√

6
5 +

√
3 ≈ n + 0.6916.

• Case 2-2. Suppose that v1 and v2 are non-adjacent.. Table 2 gives us the result.

Graphs k d12 d13 d14 d23 d24 d22 GA values

Gk
1 0 1 0 0 3 4 n − 7 n + 0.6534

Gk
1 1 0 1 0 2 4 n − 6 n + 0.5969

Gk
2 0 1 0 0 3 4 n − 7 n + 0.6534

Gk
2 1 0 0 1 3 3 n − 6 n + 0.5678

Table 2: The connected bicyclic graphs and their GA values.

From Table 2, we can see that GA(G) < n − 3 + 4
√

6
5 +

√
3 ≈ n + 0.6916.
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Suppose that Case 3 holds. Denote by v1, v2, v3 the three vertices of degree three in G of degree three.
Clearly, 0 ≤ k ≤ 1. Then we have the next four subcases.

• Case 3-1. Suppose that there are exactly three pairs of v1, v2, v3 are adjacent in G. If k = 0, graph
G is described in Theorem 1(ii), and if k = 1, graph G is described in Theorem 1(vi). So, there is no
need to consider such cases.

• Case 3-2. Suppose that there are exactly two pairs of v1, v2, v3 are adjacent in G. If k = 0, graph
G is described in Theorem 1(v) and such case is no need to be considered. If k = 1, G ∈ B̃3

n and

GA(G) = n − 4 +
√

3
2 + 8

√
6

5 ≈ n + 0.7852.

• Case 3-3. Suppose that there are exactly one pair of v1, v2, v3 are adjacent in G. If k = 0, G ∈ B̃2
n with

GA(G) = n−7+ 2
√

2
3 + 14

√
6

5 ≈ n+0.8014. If k = 1, G ∈ B̃5
n and GA(G) = n−6+

√
3

2 + 12
√

6
5 ≈ n+0.7448.

• Case 3-4. Suppose that v1, v2, v3 are pairwise non-adjacent in G. If k = 0, G ∈ B̃4
n with GA(G) =

n − 9 + 2
√

2
3 + 18

√
6

5 ≈ n + 0.76097. If k = 1, G ∈ B̃7
n and GA(G) = n − 8 +

√
3

2 + 16
√

6
5 ≈ n + 0.7044.

Finally, it is easy to check that

n − 8 +

√
3

2
+

16
√

6

5
< n − 6 +

8
√

2

3
+

4
√

3

7
+

4
√

6

5
< n − 6 +

√
3

2
+

12
√

6

5

< n − 9 +
2
√

2

3
+

18
√

6

5
< n − 4 +

√
3

2
+

8
√

6

5

< n − 7 +
2
√

2

3
+

14
√

6

5
.

Moreover, from the above arguments, if GA(G) is not equal to one of these six values, then

GA(G) < n − 3 +
4
√

6

5
+

√
3.

This completes the proof.

Proposition 3 Among the set of n-vertex bicyclic graph G with exactly two pendant paths, different from
the types of graphs described in Theorem 1(iv),

(i) the graphs in B̃8
n = {G ∈ B̃n : d12 = 2, d23 = 4, d33 = 4, d22 = n − 9} are the unique graphs with the

maximum GA index, which is equal to n − 5 + 4
√

2
3

+ 8
√

6
5

;

(ii) the graphs in B̃9
n = {G ∈ B̃n : d12 = 1, d13 = 1, d23 = 1, d33 = 5, d22 = n− 7} are the unique graphs with

the second maximum GA index, which is equal to n − 2 + 2
√

2
3

+ 2
√

6
5

+
√

3
2

;

(iii) the graphs in B̃10
n = {G ∈ B̃n : d12 = 2, d23 = 6, d33 = 3, d22 = n − 10} are the unique graphs with the

third maximum GA index, which is equal to n − 7 + 4
√

2
3 + 12

√
6

5 ;

(iv) the graphs in B̃11
n = {G ∈ B̃n : d12 = 1, d13 = 1, d23 = 3, d33 = 4, d22 = n − 8} are the unique graphs

with the fourth maximum GA index, which is equal to n − 4 + 2
√

2
3 + 6

√
6

5 +
√

3
2 ;

(v) the graphs in B̃12
n = {G ∈ B̃n : d12 = 2, d23 = 8, d33 = 2, d22 = n − 11} are the unique graphs with the

fifth maximum GA index, which is equal to n − 9 + 4
√

2
3 + 16

√
6

5 ;

(vi) the graphs in B̃13
n = {G ∈ B̃n : d12 = 2, d23 = 2, d24 = 2, d34 = 2, d33 = 1, d22 = n − 8} are the unique

graphs with the sixth maximum GA index, which is equal to n − 7 + 8
√

2
3 + 4

√
6

5 + 8
√

3
7 ;
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(vii) the graphs in B̃14
n = {G ∈ B̃n : d12 = 1, d13 = 1, d23 = 5, d33 = 3, d22 = n − 9} are the unique graphs

with the seventh maximum GA index, which is equal to n − 6 + 2
√

2
3 +

√
3

2 + 2
√

6;

(viii) the graphs in B̃15
n = {G ∈ B̃n : d13 = 2, d23 = 2, d33 = 4, d22 = n − 7} are the unique graphs with the

eighth maximum GA index, which is equal to n − 3 + 4
√

6
5 +

√
3.

Proof. There are five possible subcases.
Case 1. There is exactly one vertex in G of degree six, and all other vertices of G are of degree one or

two.
Case 2. There is exactly one vertex of degree five and one vertex of degree three in G, and all other

vertices of G are of degree one or two.
Case 3. There are exactly two vertices in G of degree four, and all other vertices of G are of degree one

or two.
Case 4. There is exactly one vertex of degree four and two vertices of degree three in G, and all other

vertices of G are of degree one or two.
Case 5. There are exactly four vertices of degree three in G, and all other vertices of G are of degree

one or two.
Suppose that Case 1 holds. Denote by k the number of pendant path of length one in G. Clearly,

0 ≤ k ≤ 2. Then

GA(G) =

(

2
√

6

7
− 2

√
2

3
−

√
3

2
+ 1

)

· k + n − 7 +
4
√

2

3
+ 3

√
3

≤ n − 7 +
4
√

2

3
+ 3

√
3

< n − 3 +
4
√

6

5
+
√

3.

Suppose that Case 2 holds. Denote by v1 and v2 be the two vertices of degree three and five, respectively.
Without loss of generality, denote by k1 the number of pendant paths attached to v1 in G, and k2 the number
of pendant paths attached to v2 in G. Clearly, k1 + k2 = 2. Then we have the next two subcases.

• Case 2-1. Suppose that v1 and v2 are adjacent. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k1 +

(√
5

3
− 2

√
2

3
− 2

√
10

7
+ 1

)

· k2

+n − 8 +

√
15

4
+

4
√

2

3
+

4
√

6

5
+

8
√

10

7

≤ n − 8 +

√
15

4
+

4
√

2

3
+

4
√

6

5
+

8
√

10

7

< n − 3 +
4
√

6

5
+

√
3.

• Case 2-2. Suppose that v1 and v2 are non-adjacent. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k1 +

(√
5

3
− 2

√
2

3
− 2

√
10

7
+ 1

)

· k2 +

n − 9 +
4
√

2

3
+

6
√

6

5
+

10
√

10

7

≤ n − 9 +
4
√

2

3
+

6
√

6

5
+

10
√

10

7

< n − 3 +
4
√

6

5
+
√

3.
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Suppose that Case 3 holds. Assume there are two vertices v1 and v2 of degree four in G. Denote by k

the number of pendant path of length one in G. Clearly, 0 ≤ k ≤ 2. Then we have the next two subcases.

• Case 3-1. Suppose that v1 and v2 are adjacent in G. Then

GA(G) = k · 2
√

1 · 4
1 + 4

+ (2 − k)

(

2
√

1 · 2
1 + 2

)

+ (6 − k)

(

2
√

2 · 4
2 + 4

)

+ n + 1 − (8 − k)

=

(

4

5
− 4

√
2

3
+ 1

)

· k + n − 7 +
16

√
2

3

≤ n − 7 +
16

√
2

3

< n − 3 +
4
√

6

5
+

√
3.

• Case 3-2. Suppose that v1 and v2 are non-adjacent in G. Then

GA(G) = k · 2
√

1 · 4
1 + 4

+ (2 − k)

(

2
√

1 · 2
1 + 2

)

+ (8 − k)

(

2
√

2 · 4
2 + 4

)

+ n + 1 − (10 − k)

=

(

4

5
− 4

√
2

3
+ 1

)

· k + n − 9 +
20

√
2

3

≤ n − 9 +
20

√
2

3

< n − 3 +
4
√

6

5
+
√

3.

Suppose that Case 4 holds. There are exactly one vertex v1 of degree four and two vertices v2, v3 of
degree three in G. Then we have the next four cases.

• Case 4-1. Suppose that there are exactly three pairs of v1, v2, v3 which are adjacent in G. Table 3 gives
us the result.

Graphs d14 d13 d12 d23 d24 d34 d33 d22 GA values
D1 2 0 0 2 0 2 1 n − 6 n + 0.5391

D2 0 0 2 2 2 2 1 n − 8 n + 0.7103
D3 1 0 1 2 1 2 1 n − 7 n + 0.6247

D4 1 1 0 1 1 2 1 n − 6 n + 0.5681
D5 0 1 1 1 2 2 1 n − 7 n + 0.6537
D6 0 2 0 0 2 2 1 n − 6 n + 0.5972

Table 3: The connected bicyclic graphs and their GA values.

From Table 3, let G = D2 ∈ B̃13
n and GA(G) = n − 7 + 8

√
2

3 + 4
√

6
5 + 8

√
3

7 ≈ n + 0.7103. For other

bicyclic graph G, GA(G) < n − 3 + 4
√

6
5 +

√
3 ≈ n + 0.6916.

• Case 4-2. Suppose that there are exactly two pairs of v1, v2, v3 which are adjacent in G. Table 4 gives
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us the result.

Graphs d14 d13 d12 d23 d24 d34 d33 d22 GA values
D1 2 0 0 4 0 2 0 n − 7 n + 0.4987

D2 0 0 2 4 2 2 0 n − 9 n + 0.6699
D3 1 0 1 4 1 2 0 n − 8 n + 0.5843

D4 1 1 0 3 1 2 0 n − 7 n + 0.5277
D5 0 1 1 3 2 2 0 n − 8 n + 0.6133

D6 0 2 0 2 2 2 0 n − 7 n + 0.5567

Table 4: The connected bicyclic graphs and their GA values.

From Table 4, we can see that GA(G) < n − 3 + 4
√

6
5

+
√

3 ≈ n + 0.6916.

• Case 4-3. Suppose that there are exactly one pair of v1, v2, v3 which are adjacent in G. Table 5 gives
us the result.

Graphs d14 d13 d12 d23 d24 d34 d33 d22 GA values
D1 2 0 0 4 2 0 1 n − 8 n + 0.4048

D2 0 0 2 4 4 0 1 n − 10 n + 0.5760
D3 1 0 1 4 3 0 1 n − 9 n + 0.4904

D4 1 1 0 3 3 0 1 n − 8 n + 0.4338
D5 0 1 1 3 4 0 1 n − 9 n + 0.5195

D6 0 2 0 2 4 0 1 n − 8 n + 0.4629

Table 5: The connected bicyclic graphs and their GA values.

From Table 5, we can see that GA(G) < n − 3 + 4
√

6
5

+
√

3 ≈ n + 0.6916.

• Case 4-4. Suppose that v1, v2, v3 are pairwise non-adjacent in G. Table 6 gives us the result.

Graphs d14 d13 d12 d23 d24 d34 d33 d22 GA values
D1 2 0 0 4 2 0 1 n − 8 n + 0.4315

D2 0 0 2 4 4 0 1 n − 10 n + 0.6028
D3 1 0 1 4 3 0 1 n − 9 n + 0.5172

D4 1 1 0 3 3 0 1 n − 8 n + 0.4606
D5 0 1 1 3 4 0 1 n − 9 n + 0.5462

D6 0 2 0 2 4 0 1 n − 8 n + 0.4896

Table 6: The connected bicyclic graphs and their GA values.

From Table 6, we can see that GA(G) < n − 3 + 4
√

6
5 +

√
3 ≈ n + 0.6916.

Suppose that Case 5 holds. There are exactly four vertices v1, v2, v3, v4 of degree three in G. Denote by
k the number of pendant path of length one in G. Clearly, 0 ≤ k ≤ 2. Then we have the next six subcases.

• Case 5-1. Suppose that v1, v2, v3, v4 are adjacent in G. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k + n − 3 +
4
√

2

3
+

4
√

6

5
.

If k = 0, the graph G is described in Theorem 1(iv), so there is no need to consider such case. If

k = 1, then G ∈ B̃9
n and GA(G) = n − 2 + 2

√
2

3 + 2
√

6
5 +

√
3

2 ≈ n + 0.7866. If k = 2, n = 6, then

GA(G) = n − 1 +
√

3 ≈ 6.7321 < n − 3 + 4
√

6
5 +

√
3 ≈ n + 0.6916.
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• Case 5-2. Suppose that there are exactly four pairs of v1, v2, v3, v4 are adjacent in G. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k + n − 5 +
4
√

2

3
+

4
√

6

5
.

If k = 0, then G ∈ B̃8
n and GA(G) = n − 5 + 4

√
2

3 + 8
√

6
5 ≈ n + 0.8048. If k = 1, then G ∈ B̃11

n and

GA(G) = n−4+ 2
√

2
3 + 6

√
6

5 +
√

3
2 ≈ n+0.7482. If k = 2, then G ∈ B̃15

n and GA(G) = n−3+ 4
√

6
5 +

√
3 ≈

n + 0.6916.

• Case 5-3. Suppose that there are exactly three pairs of v1, v2, v3, v4 are adjacent in G. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k + n − 7 +
4
√

2

3
+

4
√

6

5
.

If k = 0, then G ∈ B̃10
n and GA(G) = n − 7 + 4

√
2

3
+ 12

√
6

5
≈ n + 0.7644. If k = 1, then G ∈ B̃14

n

and GA(G) = n − 6 + 2
√

2
3 +

√
3

2 + 2
√

6 ≈ n + 0.7078. If k = 2, then GA(G) = n − 5 + 8
√

6
5 +

√
3 ≈

n + 0.6512 < n − 3 + 4
√

6
5 +

√
3 ≈ n + 0.6916.

• Case 5-4. Suppose that there are exactly two pairs of v1, v2, v3, v4 are adjacent in G. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k + n − 9 +
4
√

2

3
+

4
√

6

5

If k = 0, then G ∈ B̃12
n and GA(G) = n − 9 + 4

√
2

3 + 16
√

6
5 ≈ n + 0.72399. If k = 1, 2, then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k + n − 9 +
4
√

2

3
+

4
√

6

5

≤
(√

3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· 1 + n − 9 +
4
√

2

3
+

4
√

6

5

< n − 3 +
4
√

6

5
+

√
3.

• Case 5-5. Suppose that there are exactly one pair of v1, v2, v3, v4 are adjacent in G. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k + n − 11 +
4
√

2

3
+ 4

√
6

≤ n − 11 +
4
√

2

3
+ 4

√
6

< n − 3 +
4
√

6

5
+

√
3.

• Case 5-6. Suppose that all vertices v1, v2, v3, v4 are not adjacent in G. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k + n − 13 +
4
√

2

3
+

24
√

6

5

≤ n − 13 +
4
√

2

3
+

24
√

6

5

< n − 3 +
4
√

6

5
+
√

3.
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Finally, it is easy to check that

n − 3 +
4
√

6

5
+

√
3 < n − 6 +

2
√

2

3
+

√
3

2
+ 2

√
6 < n − 7 +

8
√

2

3
+

4
√

6

5
+

8
√

3

7
<

n − 9 +
4
√

2

3
+

16
√

6

5
< n − 4 +

2
√

2

3
+

6
√

6

5
+

√
3

2
< n − 7 +

4
√

2

3
+

12
√

6

5
<

n − 2 +
2
√

2

3
+

2
√

6

5
+

√
3

2
< n − 5 +

4
√

2

3
+

8
√

6

5
.

This completes the proof.

Proposition 4 Among the set of n-vertex bicyclic graph G with exactly three pendant paths,

(i) the graphs in B̃16
n = {G ∈ B̃n : d12 = 3, d23 = 3, d33 = 6, d22 = n − 11} are the unique graphs with the

maximum GA index, which is equal to n − 5 + 2
√

2 + 6
√

6
5 ;

(ii) the graphs in B̃17
n = {G ∈ B̃n : d12 = 3, d23 = 5, d33 = 5, d22 = n − 12} are the unique graphs with the

second maximum GA index, which is equal to n − 7 + 2
√

2 + 2
√

6;

(iii) the graphs in B̃18
n = {G ∈ B̃n : d12 = 2, d13 = 1, d23 = 2, d33 = 6, d22 = n − 10} are the unique graphs

with the third maximum GA index, which is equal to n − 4 +
√

3
2 + 4

√
2

3 + 4
√

6
5 ;

(iv) the graphs in B̃19
n = {G ∈ B̃n : d12 = 3, d23 = 2, d24 = 1, d34 = 3, d33 = 2, d22 = n − 10} are the unique

graphs with the fourth maximum GA index, which is equal to n − 8 + 8
√

2
3 + 4

√
6

5 + 12
√

3
7 ;

(v) for all other graphs G, it holds that

GA(G) < n − 3 +
4
√

6

5
+
√

3.

Proof. There are seven possible cases.
Case 1. There is exactly one vertex on the cycle of G of maximum degree seven, and all other vertices

of G are of degree one or two.
Case 2. There is exactly one vertex of degree six and one vertex of degree three in G, and all other

vertices of G are of degree one or two.
Case 3. There is exactly one vertex of degree five and one vertex of degree four in G, and all other

vertices of G are of degree one or two.
Case 4. There is exactly one vertex of degree five and two vertices of degree three in G, and all other

vertices of G are of degree one or two.
Case 5. There is exactly one vertex of degree four and three vertices of degree three in G, and all other

vertices of G are of degree one or two.
Case 6. There are exactly two vertices of degree four and one vertex of degree three in G, and all other

vertices of G are of degree one or two.
Case 7. There are exactly five vertices in G of degree three, and all other vertices of G are of degree one

or two.
Suppose that Case 1 holds. Denote by k the number of pendant path of length one in G. Clearly,

0 ≤ k ≤ 3. Then

GA(G) =

(√
7

4
− 2

√
2

3
− 2

√
14

9
+ 1

)

· k + n − 9 + 2
√

2 +
14

√
14

9

≤ n − 9 + 2
√

2 +
14

√
14

9

< n − 3 +
4
√

6

5
+

√
3.
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Suppose that Case 2 holds. Denote by v1 and v2 the two vertices of degree three and six, respectively.
Denote by k1 the number of pendant paths of length one attached to v1 in G and k2 the number of pendant
paths of length one attached to v2 in G. Clearly, k1 + k2 = 3. Then we have the next two subcases.

• Case 2-1. Suppose that v1 and v2 are adjacent in G. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k1 +

(

2
√

6

7
− 2

√
2

3
−

√
3

2
+ 1

)

· k2 +

n − 10 +
8
√

2

3
+

4
√

6

5
+

5
√

3

2

≤ n − 10 +
8
√

2

3
+

4
√

6

5
+

5
√

3

2

< n − 3 +
4
√

6

5
+

√
3.

• Case 2-2. Suppose that v1 and v2 are not adjacent in G. Then

GA(G) =

(√
3

2
− 2

√
2

3
− 2

√
6

5
+ 1

)

· k1 +

(

2
√

6

7
− 2

√
2

3
−

√
3

2
+ 1

)

· k2

+n − 11 + 2
√

2 + 3
√

3 +
6
√

6

5

≤ n − 11 + 2
√

2 + 3
√

3 +
6
√

6

5

< n − 3 +
4
√

6

5
+
√

3.

Suppose that Case 3 holds. Denote by v1 and v2 the two vertices of degree four and five, respectively.
Denote by k1 the number of pendant paths of length one attached to v1 in G and k2 the number of pendant
paths of length one attached to v2 in G. Clearly, k1 + k2 = 3. Then we have the next two subcases.

• Case 3-1. Suppose that v1 and v2 are adjacent in G. Then

GA(G) =

(

4

5
− 4

√
2

3
+ 1

)

· k1 +

(√
5

3
− 2

√
2

3
− 2

√
10

2
+ 1

)

· k2

+n − 10 + 4
√

2 +
4
√

5

9
+

8
√

10

7

≤ n − 10 + 4
√

2 +
4
√

5

9
+

8
√

10

7

< n − 3 +
4
√

6

5
+
√

3.

• Case 3-2. Suppose that v1 and v2 are not adjacent in G. Then

GA(G) =

(

4

5
− 4

√
2

3
+ 1

)

· k1 +

(√
5

3
− 2

√
2

3
− 2

√
10

7
+ 1

)

· k2 +

n − 11 +
14

√
2

3
+

10
√

10

7

≤ n − 11 +
14

√
2

3
+

10
√

10

7

< n − 3 +
4
√

6

5
+
√

3.
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Suppose that Case 4 holds. There are exactly one vertex of degree five v1 and two vertices of degree
three v2 and v3 in G. Then we have the next four subcases.

• Case 4-1. Suppose that v1, v2, v3 are pairwise adjacent in G. Table 7 gives us the result.

Graphs d15 d13 d12 d23 d25 d35 d33 d22 GA values

D1 0 0 3 2 3 2 1 n − 10 n + 0.4350
D2 3 0 0 2 0 2 1 n − 7 n + 0.1322

D3 1 0 2 2 2 2 1 n − 9 n + 0.3341
D4 2 0 1 2 1 2 1 n − 8 n + 0.2331

D5 1 2 0 0 2 2 1 n − 7 n + 0.2209
D6 0 2 1 0 3 2 1 n − 8 n + 0.3219

D7 0 1 2 1 3 2 1 n − 9 n + 0.37855
D8 1 1 1 1 2 2 1 n − 8 n + 0.2775

D9 2 1 0 1 1 2 1 n − 7 n + 0.1765

Table 7: The connected bicyclic graphs and their GA values.

From Table 7, we can see that GA(G) < n − 3 + 4
√

6
5

+
√

3 ≈ n + 0.6916.

• Case 4-2. Suppose that there are exactly two pairs of v1, v2, v3 are adjacent in G. Table 8 gives us the
result.

Graphs d15 d13 d12 d23 d25 d35 d33 d22 GA values
D1 0 0 3 4 3 2 0 n − 11 n + 0.3946

D2 3 0 0 4 0 2 0 n − 8 n + 0.0917
D3 1 0 2 4 2 2 0 n − 10 n + 0.2937

D4 2 0 1 4 1 2 0 n − 9 n + 0.1927
D5 1 2 0 2 2 2 0 n − 8 n + 0.1805

D6 0 2 1 2 3 2 0 n − 9 n + 0.2815
D7 0 1 2 3 3 2 0 n − 10 n + 0.3381

D8 1 1 1 3 2 2 0 n − 9 n + 0.2371
D9 2 1 0 3 1 2 0 n − 8 n + 0.1361

Table 8: The connected bicyclic graphs and their GA values.

From Table 8, we can see that GA(G) < n − 3 + 4
√

6
5

+
√

3 ≈ n + 0.6916.

• Case 4-3. Suppose that there are exactly one pair of v1, v2, v3 are adjacent in G. It is easy to handle

cases 4-3 in the same fashion as cases 4-1 and 4-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

• Case 4-4. Suppose that v1, v2, v3 are pairwise non-adjacent in G. It is easy to handle cases 4-4 in the

same fashion as cases 4-1 and 4-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

Suppose that Case 5 holds. There are exactly one vertex v1 of degree four and three vertices v2 and v3

of degree three in G. Then we have the next six subcases.
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• Case 5-1. Suppose that v1, v2, v3, v4 are pairwise adjacent in G. Table 9 gives us the result.

Graphs d14 d13 d12 d23 d24 d34 d33 d22 GA values
D1 0 0 3 1 2 2 3 n − 10 n + 0.6733

D2 2 1 0 0 0 2 3 n − 7 n + 0.4455
D3 0 1 2 0 2 2 3 n − 9 n + 0.6167

D4 2 0 1 1 0 2 3 n − 8 n + 0.5021
D5 1 0 2 1 1 2 3 n − 9 n + 0.5877

D6 1 1 1 0 1 2 3 n − 8 n + 0.5311
D7 0 0 3 2 1 3 2 n − 10 n + 0.7001

D8 1 2 0 0 0 3 2 n − 7 n + 0.5013
D9 0 2 1 0 1 3 2 n − 8 n + 0.5869

D10 1 0 2 2 0 3 2 n − 9 n + 0.6144
D11 0 1 2 1 1 3 2 n − 9 n + 0.6435

D12 1 1 1 1 0 3 2 n − 8 n + 0.5579

Table 9: The connected bicyclic graphs and their GA values.

From Table 9, let G = D7 ∈ B̃19
n and GA(G) = n − 8 + 8

√
2

3
+ 4

√
6

5
+ 12

√
3

7
≈ n + 0.7001. For other

bicyclic graph G, GA(G) < n − 3 + 4
√

6
5

+
√

3 ≈ n + 0.6916.

• Case 5-2. Suppose that there are exactly four vertices v1, v2, v3, v4 are adjacent in G. Table 10 gives
us the result.

Graphs d14 d13 d12 d23 d24 d34 d33 d22 GA values
D1 0 0 3 2 3 1 3 n − 11 n + 0.6062

D2 3 0 0 2 0 1 3 n − 8 n + 0.3493
D3 1 0 2 2 2 1 3 n − 10 n + 0.5206

D4 2 0 1 2 1 1 3 n − 9 n + 0.43495
D5 0 0 3 4 1 3 1 n − 11 n + 0.6597

D6 1 2 0 2 0 3 1 n − 8 n + 0.4609
D7 0 2 1 2 1 3 1 n − 9 n + 0.5465

D8 1 0 2 4 0 3 1 n − 10 n + 0.5740
D9 0 1 2 3 1 3 1 n − 10 n + 0.6031

D10 1 1 1 3 0 3 1 n − 9 n + 0.5175
D11 0 0 3 3 2 2 2 n − 11 n + 0.6329

D12 0 3 0 0 2 2 2 n − 8 n + 0.4632
D13 0 1 2 2 2 2 2 n − 10 n + 0.5763

D14 0 2 1 1 2 2 2 n − 9 n + 0.5198

Table 10: The connected bicyclic graphs and their GA values.

From Table 10, we can see that GA(G) < n − 3 + 4
√

6
5

+
√

3 ≈ n + 0.6916.

• Case 5-3. Suppose that there are exactly three vertices v1, v2, v3, v4 are adjacent in G. It is easy to

handle case 5-3 in the same fashion as cases 5-1 and 5-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

• Case 5-4. Suppose that there are exactly three vertices v1, v2, v3, v4 are not adjacent in G. It is easy

to handle case 5-4 in the same fashion as cases 5-1 and 5-2, and we obtain GA(G) < n− 3 + 4
√

6
5 +

√
3.

• Case 5-5. Suppose that there are exactly two vertices v1, v2, v3, v4 are not adjacent in G. It is easy to

handle case 5-5 in the same fashion as cases 5-1 and 5-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.
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• Case 5-6. Suppose that v1, v2, v3, v4 are pairwise non-adjacent in G. It is easy to handle case 5-6 in

the same fashion as cases 5-1 and 5-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

Suppose that Case 6 holds. There are exactly one vertex v1 of degree three and two vertices v2 and v3 of
degree four in G. Then we have the next four cases.

• Case 6-1. Suppose that v1, v2, v3 are pairwise adjacent in G. Table 11 gives us the result.

Graphs d14 d13 d12 d23 d24 d34 d22 GA values

D1 0 0 3 1 4 2 n − 9 n + 0.55895
D2 3 0 0 1 1 2 n − 6 n + 0.3021

D3 1 0 2 1 3 2 n − 8 n + 0.4733
D4 2 0 1 1 2 2 n − 7 n + 0.3877

D5 2 1 0 0 2 2 n − 6 n + 0.3311
D6 0 1 2 0 4 2 n − 8 n + 0.5024

D7 1 1 1 0 3 2 n − 7 n + 0.4168

Table 11: The connected bicyclic graphs and their GA values.

From Table 11, we can see that GA(G) < n − 3 + 4
√

6
5

+
√

3 ≈ n + 0.6916.

• Case 6-2. Suppose that there are exactly two pairs of v1, v2, v3, v4 are adjacent in G. Table 12 gives us
the result.

Graphs d14 d13 d12 d23 d24 d34 d44 d22 GA values
D1 0 0 3 1 6 2 0 n − 11 n + 0.4446

D2 2 1 0 0 4 2 0 n − 8 n + 0.2168
D3 0 1 2 0 6 2 0 n − 10 n + 0.38798

D4 2 0 1 1 4 2 0 n − 9 n + 0.2733
D5 1 0 2 1 5 2 0 n − 10 n + 0.3589

D6 1 1 1 0 5 2 0 n − 9 n + 0.3024
D7 3 0 0 1 3 2 0 n − 8 n + 0.1877

D8 0 0 3 2 5 1 1 n − 11 n + 0.4918
D9 2 1 0 1 3 1 1 n − 8 n + 0.26399

D10 0 1 2 1 5 1 1 n − 10 n + 0.4352
D11 2 0 1 2 3 1 1 n − 9 n + 0.3206

D12 1 0 2 2 4 1 1 n − 10 n + 0.4062
D13 1 1 1 1 4 1 1 n − 10 n + 0.3496

D14 3 0 0 2 2 1 1 n − 8 n + 0.23495

Table 12: The connected bicyclic graphs and their GA values.

From Table 12, we can see that GA(G) < n − 3 + 4
√

6
5 +

√
3 ≈ n + 0.6916.

• Case 6-3. Suppose that there are exactly one pair of v1, v2, v3 are adjacent in G. It is easy to handle

case 6-3 in the same fashion as cases 6-1 and 6-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

• Case 6-4. Suppose that v1, v2, v3 are pairwise non-adjacent in G. It is easy to handle case 6-4 in the

same fashion as cases 6-1 and 6-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

Suppose that Case 7 holds. There are exactly five vertices v1, v2, v3, v4, v5 of degree three in G. Then
we have the next seven subcases.
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• Case 7-1. Suppose that there are exactly six pairs of v1, v2, v3, v4, v5 are adjacent in G. Table 13 gives
us the result.

Graphs d13 d12 d23 d33 d22 GA values
D1 0 3 3 6 n − 11 n + 0.7678

D2 3 0 0 6 n − 8 n + 0.5981
D3 1 2 2 6 n − 10 n + 0.7112
D4 2 1 1 6 n − 9 n + 0.6547

Table 13: The connected bicyclic graphs and their GA values.

From Table 13, let G = D1 ∈ B̃16
n and GA(G) = n−5+2

√
2+ 6

√
6

5 ≈ n+0.7678. Let G = D3 ∈ B̃18
n and

GA(G) = n−4+
√

3
2 + 4

√
2

3 + 4
√

6
5 ≈ n+0.7112. For other bicyclic graph G, GA(G) < n−3+ 4

√
6

5 +
√

3 ≈
n + 0.6916.

• Case 7-2. Suppose that there are exactly five pairs of v1, v2, v3, v4, v5 are adjacent in G. Table 14 gives
us the result.

Graphs d13 d12 d23 d33 d22 GA values
D1 0 3 5 5 n − 12 n + 0.7274

D2 3 0 2 5 n − 9 n + 0.5577
D3 1 2 4 5 n − 11 n + 0.6708
D4 2 1 3 5 n − 10 n + 0.6143

Table 14: The connected bicyclic graphs and their GA values.

From Table 14, let G = D1 ∈ B̃17
n and GA(G) = n − 7 + 2

√
2 + 2

√
6 ≈ n + 0.7274. For other bicyclic

graph G, GA(G) < n − 3 + 4
√

6
5 +

√
3 ≈ n + 0.6916.

• Case 7-3. Suppose that there are exactly four pairs of v1, v2, v3, v4, v5 are adjacent in G. It is easy to

handle case 7-3 in the same fashion as cases 7-1 and 7-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

• Case 7-4. Suppose that there are exactly three pairs of v1, v2, v3, v4, v5 are adjacent in G. It is easy to

handle case 7-4 in the same fashion as cases 7-1 and 7-2, and we obtain GA(G) < n − 3 + 4
√

6
5

+
√

3.

• Case 7-5. Suppose that there are exactly two pairs of v1, v2, v3, v4, v5 are adjacent in G. It is easy to

handle case 7-5 in the same fashion as cases 7-1 and 7-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

• Case 7-6. Suppose that there are exactly one pair of v1, v2, v3, v4, v5 are adjacent in G. It is easy to

handle case 7-6 in the same fashion as cases 7-1 and 7-2, and we obtain GA(G) < n − 3 + 4
√

6
5 +

√
3.

• Case 7-7. Suppose that v1, v2, v3, v4, v5 are not adjacent in G. It is easy to handle case 7-7 in the same

fashion as cases 7-1 and 7-2, and we obtain GA(G) < n − 3 + 4
√

6
5

+
√

3.

Finally, it is easy to check that

n − 8 +
8
√

2

3
+

4
√

6

5
+

12
√

3

7
< n − 4 +

√
3

2
+

4
√

2

3
+

4
√

6

5

< n − 7 + 2
√

2 + 2
√

6 < n − 5 + 2
√

2 +
6
√

6

5
.

Moreover, from the above arguments, if GA(G) is not equal to one of these four values, then

GA(G) < n − 3 +
4
√

6

5
+

√
3.

This completes the proof.
Some bicyclic graphs in Propositions 2, 3 and 4 with the smallest number of vertices are listed in Appendix.

Now, we present our main result.
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Theorem 2 Among the set of n-vertex bicyclic graphs,

(i) for n ≥ 9, the graphs in B̃8
n are the unique graphs with the seventh maximum GA index, which is equal

to n − 5 + 4
√

2
3 + 8

√
6

5 ;

(ii) for n ≥ 9, the graphs in B̃2
n are the unique graphs with the eighth maximum GA index, which is equal

to n − 7 + 2
√

2
3 + 14

√
6

5 ;

(iii) for n ≥ 10, the graphs in B̃9
n are the unique graphs with the ninth maximum GA index, which is equal

to n − 2 + 2
√

2
3

+ 2
√

6
5

+
√

3
2

;

(iv) for n ≥ 10, the graphs in B̃3
n are the unique graphs with the tenth maximum GA index, which is equal

to n − 4 +
√

3
3 + 8

√
6

5 ;

(v) for n ≥ 10, the graphs in B̃1
n are the unique graphs with the eleventh maximum GA index, which is equal

to n − 3 + 8
√

2
3 ;

(vi) for n ≥ 11, the graphs in B̃16
n are the unique graph with the twelfth maximum GA index, which is equal

to n − 5 + 2
√

2 + 6
√

6
5 ;

(vii) for n ≥ 11, the graphs in B̃10
n are the unique graph with the thirteenth maximum GA index, which is

equal to n − 7 + 4
√

2
3 + 12

√
6

5 ;

(viii) for n ≥ 11, the graphs in B̃4
n are the unique graph with the fourteenth maximum GA index, which is

equal to n − 9 + 2
√

2
3

+ 18
√

6
5

;

(ix) for n ≥ 11, the graphs in B̃11
n are the unique graph with the fifteenth maximum GA index, which is

equal to n − 4 + 2
√

2
3 + 6

√
6

5 +
√

3
2 ;

(x) for n ≥ 11, the graphs in B̃5
n are the unique graph with the sixteenth maximum GA index, which is equal

to n − 6 +
√

3
2 + 12

√
6

5 ;

(xi) for n ≥ 12, the graphs in B̃17
n are the unique graph with the seventeenth maximum GA index, which is

equal to n − 7 + 2
√

2 + 2
√

6;

(xii) for n ≥ 12, the graphs in B̃12
n are the unique graphs with the eighteenth maximum GA index which is

equal to n − 9 + 4
√

2
3 + 16

√
6

5 ;

(xiii) for n ≥ 12, the graphs in B̃6
n are the unique graphs with the nineteenth maximum GA index which is

equal to n − 6 + 8
√

2
3 + 4

√
3

7 + 4
√

6
5 ;

(xiv) for n ≥ 12, the graphs in B̃18
n are the unique graphs with the twentieth maximum GA index which is

equal to n − 4 +
√

3
2

+ 4
√

2
3

+ 4
√

6
5

;

(xv) for n ≥ 12, the graphs in B̃13
n are the unique graphs with the twenty-first maximum GA index which is

equal to n − 7 + 8
√

2
3 + 4

√
6

5 + 8
√

3
7 ;

(xvi) for n ≥ 12, the graphs in B̃14
n are the unique graphs with the twenty-second maximum GA index which

is equal to n − 6 + 2
√

2
3

+
√

3
2

+ 2
√

6;

(xvii) for n ≥ 12, the graphs in B̃7
n are the unique graphs with the twenty-third maximum GA index which

is equal to n − 8 +
√

3
2 + 16

√
6

5 ;
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(xviii) for n ≥ 12, the graphs in B̃19
n are the unique graphs with the twenty-forth maximum GA index which

is equal to n − 8 + 5
√

2
3 + 4

√
6

5 + 12
√

3
7 ;

(xix) for n ≥ 12, the graphs in B̃15
n are the unique graphs with the twenty-fifth maximum GA index which

is equal to n − 3 + 4
√

6
5

+
√

3.

Proof. Let G be an n-vertex bicyclic graph different from the graphs mentioned in Theorem 1 with the first
six maximum GA indices, where n ≥ 8. If there are k ≥ 4 pendant paths in G, then by Lemma 1, we have

GA(G) ≤
(

2
√

6

5
+

2
√

2

3

)

k + n + 1 − 2k

≤
(

2
√

6

5
+

2
√

2

3

)

· 4 + n + 1 − 2 · 4

< n − 3 +
4
√

6

5
+

√
3.

If G has exactly no pendant path, then from Proposition 1, the unique GA index is

n − 3 +
8
√

2

3
.

and GA(G) < n − 3 + 4
√

6
5 +

√
3. If G has exactly one pendant paths, then from Proposition 2, the first

sixth maximum GA indices are, respectively,

n − 7 +
2
√

2

3
+

14
√

6

5
, n − 4 +

√
3

2
+

8
√

6

5
, n − 9 +

2
√

2

3
+

18
√

6

5
,

n − 6 +

√
3

2
+

12
√

6

5
, n − 6 +

8
√

2

3
+

4
√

3

7
+

4
√

6

5
, n − 8 +

√
3

2
+

16
√

6

5
,

and for all other graphs G,

GA(G) < n − 3 +
4
√

6

5
+

√
3.

If G has exactly two pendant paths, then from Proposition 3, the first eighth maximum GA indices are,
respectively

n − 5 +
4
√

2

3
+

8
√

6

5
, n − 2 +

2
√

2

3
+

2
√

6

5
+

√
3

2
, n − 7 +

4
√

2

3
+

12
√

6

5

n − 4 +
2
√

2

3
+

6
√

6

5
+

√
3

2
, n − 9 +

4
√

2

3
+

16
√

6

5
, n − 7 +

8
√

2

3
+

4
√

6

5
+

8
√

3

7

n − 6 +
2
√

2

3
+

√
3

2
+ 2

√
6, n − 3 +

4
√

6

5
+

√
3.

If G has exactly three pendant paths, then from Proposition 4, the first fourth maximum GA indices are,
respectively

n − 5 + 2
√

2 +
6
√

6

5
, n − 7 + 2

√
2 + 2

√
6,

n − 4 +

√
3

2
+

4
√

2

3
+

4
√

6

5
, n − 8 +

8
√

2

3
+

4
√

6

5
+

12
√

3

7
,

and for all other graphs G,

GA(G) < n − 3 +
4
√

6

5
+

√
3.
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At the end, we can be check that

n − 3 +
4
√

6

5
+

√
3 < n − 8 +

5
√

2

3
+

4
√

6

5
+

12
√

3

7

< n − 8 +

√
3

2
+

16
√

6

5
< n − 6 +

2
√

2

3
+

√
3

2
+ 2

√
6

< n − 7 +
8
√

2

3
+

4
√

6

5
+

8
√

3

7
< n − 4 +

√
3

2
+

4
√

2

3
+

4
√

6

5

< n − 6 +
8
√

2

3
+

4
√

3

7
+

4
√

6

5
< −9 +

4
√

2

3
+

16
√

6

5

< n − 7 + 2
√

2 + 2
√

6 < n − 6 +

√
3

2
+

12
√

6

5

< n − 4 +
2
√

2

3
+

6
√

6

5
+

√
3

2
< n − 9 +

2
√

2

3
+

18
√

6

5

< n − 7 +
4
√

2

3
+

12
√

6

5
< n − 5 + 2

√
2 +

6
√

6

5

< n − 3 +
8
√

2

3
< n − 4 +

√
3

3
+

8
√

6

5

< n − 2 +
2
√

2

3
+

2
√

6

5
+

√
3

2
< n − 7 +

2
√

2

3
+

14
√

6

5

< n − 5 +
4
√

2

3
+

8
√

6

5
.

From the above arguments, if GA(G) is not equal to one of these nineteeth values, then GA(G) < n − 3 +
4
√

6
5 +

√
3.

Now the result follows easily. This completes the proof.

4 Conclusion

In this paper, we presented a further ordering for the GA indices of bicyclic graphs, and determined the first
twenty-fifth maximum GA indices of bicyclic graphs. In particular, in our proof, we mainly investigated the
GA indices of bicyclic graphs with at most three pendant paths. If we want to order more bicyclic graphs
with large GA indices, we need only to consider such graphs with more pendant paths (e.g., the bicyclic
graphs with exactly four or five pendant paths).
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5 Appendix

In the following figures, we list some bicyclic graphs in Propositions 2, 3 and 4 with the smallest number of
vertices.
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Figure 2: The bicyclic graphs in Proposition 4(i) with n = 9.

Figure 3: The bicyclic graphs in Proposition 4(ii) with n = 10.

Figure 4: The bicyclic graphs in Proposition 4(iii) with n = 11.
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Figure 5: The bicyclic graphs in Proposition 4(iv) with n = 11.

Figure 6: The bicyclic graphs in Proposition 4(v) with n = 12.

Figure 7: The bicyclic graphs in Proposition 4(vi) with n = 12.
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Figure 8: The bicyclic graphs in Proposition 5(i) with n = 9.

Figure 9: The bicyclic graphs in Proposition 5(ii) with n = 10.

Figure 10: The bicyclic graphs in Proposition 5(iii) with n = 11.
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Figure 11: The bicyclic graphs in Proposition 5(iv) with n = 11.

Figure 12: The bicyclic graphs in Proposition 5(v) with n = 12.
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Figure 13: The bicyclic graphs in Proposition 5(vi) with n = 12.

Figure 14: The bicyclic graphs in Proposition 5(vii) with n = 12.
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Figure 15: The bicyclic graphs in Proposition 5(viii) with n = 12.

Figure 16: The bicyclic graphs in Proposition 6(i) with n = 11.
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Figure 17: The bicyclic graphs in Proposition 6(ii) with n = 12.

Figure 18: The bicyclic graphs in Proposition 6(iii) with n = 12.

document

Figure 19: The bicyclic graphs in Proposition 6(iv) with n = 12.


