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Abstract

In this study we revisit a theme of F. Nyabadza et al. [Journal of Biological

Systems 18 No.2 (2010), 357–375], studying the optimal control of rolling out a
public health education campaign and providing some further insights. We pro-
duce a Lyapunov function to prove global stability of the disease free equilibrium,
and include a sensitivity analysis of the parameters and state variables. Finally,
we present an optimal control problem on the implementation strategy of public
health education, together with its solution. Various simulations are provided to
illustrate the control problem.

1 Introduction

The HIV/AIDS epidemic has placed a large burden on public health resources glob-
ally, and especially in developing countries with limited resources. The importance
of preventive measures in the fight against HIV, especially in resource-poor countries,
cannot be over-emphasized. In the fight against HIV/AIDS, public health education
plays an essential role. Public health education seeks to protect and improve the health
of communities through education, promotion of healthy lifestyles, and awareness of
measures for prevention of injury and disease. Public health professionals analyze the
extent to which health is affected by various factors such as the environment, behavior,
personal choice, genetics, etc., in order to develop programmes that benefit the health
of families and communities.

Globally several initiatives on public health education have been launched. Different
initiatives on education with regard to HIV have been launched by UNAIDS, to support
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the mainstreaming of HIV/AIDS in the Global Monitoring Report (GMR) (UNESCO
and HIV/AIDS Training). In 2002, the UNAIDS Inter-Agency Task Team (IATT)
on Education, convened by UNESCO, was established. Its aim is to improve and
accelerate the roll-out of education on HIV and AIDS. Its specific objectives are to
promote and support good practices in the education sector related to HIV/AIDS, and
also to encourage alignment and harmonization within and across agencies to support
global and country-level actions (UNESCO and HIV/AIDS Training).

In South Africa, the publication HIV and AIDS Emergency Guidelines for Edu-

cators from the Department of Education, sets out HIV facts and messages about
preventing HIV. This deals with questions from educators about sexuality education,
advises on universal precautions and how to build a school culture of non-discrimination
(UNAIDS and Inter-Agency Task Team (IATT)). Some educational programmes on
radio and television in South Africa, which enlighten children about HIV/AIDS were
also supported by the government (UNAIDS and Inter-Agency Task Team (IATT),
UNESCO and HIV/AIDS Training). A model, called Schools as Centres of Care and

Support (SCCS), was also tested and supported by Media in Education Trust (MiET)
in 2003/4. The model was later implemented by Swaziland and Zambia in 2005 and
2008 respectively.

Mathematical models have been an important tool as a means of informing con-
trol strategies, since they form the basis for short and long term prediction of HIV
and AIDS prevalence. From the early models of May and Anderson (Anderson et al.,
1986; Anderson, 1988; May and Anderson, 2011) several modifications of the modeling
structure have been presented. Specific related issues have been researched by various
authors. For instance, Cai et al. (2009) investigated an HIV/AIDS epidemic model
with treatment, studying the stability of its equilibrium points. Naresh et al. (2009)
used a mathematical model to analyze the spread of the HIV/AIDS epidemic with
recruitment of infectives. Nyabadza et al. (2010) used a model incorporating condom
use, sexual partner acquisition, behavior change and treatment to study the epidemic
trends of HIV/AIDS in South Africa. The paper Hussaini et al. (2011) emphasizes and
analyses the role of education in different countries. Recently, Nsuami and Witbooi
(2018) propose a new model for the transmission of HIV/AIDS including ART and
PrEP. The model was used to test the effects of ART and of the uptake of PrEP in
a given population, and proved the global stability of the disease-free equilibrium and
that of endemic equilibrium (Nsuami and Witbooi, 2018). Another study by Nyabadza
et al. (2010), investigates the reduction in infection by observing the changes in sexual
behavior through public health information campaigns, and self-withdrawal of individ-
uals with AIDS from sexual activity. Their results showed that an increase in effective
public health information campaigns together with AIDS individuals’ withdrawing from
sexual activity, will lead to a significant reduction in the spread of HIV/AIDS.

This paper makes a contribution to the theme of Nyabadza et al. (2010) by pro-
ducing a Lyapunov function to prove global stability of the disease free equilibrium,
analyzing the sensitivity of the basic reproduction number and the endemic equilib-
rium point, and investigating for an optimal control strategy for the roll-out of public
health education to minimize the spread of HIV/AIDS. We determine the optimal lev-
els of intensity of public health education effort, over time, for disease control using
the Pontryagin’s Maximum Principle. Both analytical and numerical studies of the
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model are conducted to obtain the necessary information that could be useful towards
reducing the spread of the disease. In Section 2 of this paper we present the HIV model
proposed by Nyabadza et al. (2010) The stability discussion follows in Section 3 and
the sensitivity analysis in Section 4. In Section 5 we present the optimal control prob-
lem together with its solution. Numerical results and analysis of the control problem
appear in Section 6, while Section 7 offers some concluding remarks.

2 The Model and Its Equilibrium States

The model which is central to this paper is that of Nyabadza et al. (2010). The said
model considers a sexually active population of size N(t) at time t. The population
is subdivided into the following subclasses (compartments): susceptibles S(t), asymp-
tomatic infectives I1(t) (infectious individuals who are yet to show symptoms of the
disease), symptomatic infectives I2(t) (infectious individuals who show symptoms of
the disease) and individuals with full blown AIDS, A(t). We assume that the mode of
transmission is via heterosexual contacts. Then the following equation holds.

N(t) = S(t) + I1(t) + I2(t) +A(t).

We also assume that any two susceptible individuals are equally likely to be infected
by an infectious individual.

The normal mortality rate is µ and the disease induced mortality rate is denoted
by σ. The recruitment rate of susceptible individuals is given by µb while the transfer
rate from the asymptomatic compartment to the symptomatic compartment is given
by σ and the removal rate of the symptomatic infectives as they develop to AIDS by
ρ. Thus we have the following system.



























dS

dt
= µb− µS − λ(I, A)S,

dI1

dt
= λ(I, A)S − (µ + σ)I1,

dI2

dt
= σI1 − (µ + ρ)I2 ,

dA

dt
= ρI2 − (µ+ δ)A,

(1)

where

λ(I, A) =
cβ{I1 + η1I2 + η2(1 − q)A}

1 + α{I1 + η1I2 + η2(1 − q)A}

η1 and η2 measure the contribution of I2 and A relative to I1, and I = (I1, I2).
The constant c is the mean number of sexual partners per given time and β de-

notes the probability of infection, while q represents the proportion of individuals who
voluntarily withdraw from sexual activity as a result of knowing their HIV infection
status, implying (1−q) engage in sexual activities. By α we denote the effort on public
health education, which we assume to be proportional to its effectiveness in reducing
HIV transmission. In general we regard α as being a function of time. In fact, α(t) will
serve as the control variable when we study the optimal control problem. When an-
alyzing equilibria, then α is considered a time-independent constant parameter. Note
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that all the parameters are positive. The initial state of the system (1) is given as

S(0) = S0 > 0, I1(0) = I10 > 0, I2(0) = I20 > 0, A(0) = A0 > 0.

The proposed contact rate allows for flexibility, covering many special cases such as
the popular standard forms (with α = 0) while also approximating a saturation trans-
mission rate when the term

α{I1 + η1I2 + η2(1 − q)A}

is significantly bigger than 1. As declared in Nyabadza et al. (2010), in the latter case
the transmission rate very closely reflects the availability of public health education in
the population.

The equilibrium points have been discussed in Nyabadza et al. (2010). There is
the possibility of an endemic equilibrium point E1, on which we shall present a very
brief sensitivity analysis in Section 3. The disease-free equilibrium point is denoted by
E0, and is given by E0 = (b, 0, 0, 0). It is known that for local asymptotic stability of
E0, a necessary condition is that the numerical value of the basic reproduction number
does not exceed unity. Recall that the basic reproduction number, usually denoted by
R0, of a disease in a given population (see van den Driessche and Watmough (2002)
for instance), is the expected number of secondary infections produced by one infective
in a completely susceptible population. A method for calculating R0 is developed in
van den Driessche and Watmough (2002). For the model (1), the basic reproductive
number is calculated in Nyabadza et al. (2010) and is given by

R0 =
βbc

µ+ σ

[

1 +
η1σ

ρ+ µ
+

η2ρσ(1 − q)

(ρ+ µ)(δ + µ)

]

.

We are interested in the global stability of E0. If the disease-free equilibrium is globally
asymptotically stable, then we can be sure that whenever there has been infection,
over time the disease will vanish from the population provided there are no external
disturbances on the population.

We prove the global stability of E0 by exhibiting a Lyapunov function.

THEOREM 1. The disease-free equilibrium E0 of the model (1) is globally asymp-
totically stable if R0 < 1.

PROOF. Let us fix some constants a1, a2, a3 and ξ as follows:

a1 = (µ + ρ)(µ + δ),

a2 = cβb[η1(µ + δ) + ρξ],

a3 = ξcβb(µ + ρ) and ξ = η2(1 − q).

Now we define a function V = V (I1(t), I2(t), A(t)) which we shall prove to be a Lya-
punov function at the point (I1, I2, A) = (0, 0, 0).

V = a1I1 + a2I2 + a3A.
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Taking the derivatives with respect to time, we obtain

V̇ = a1İ1 + a2İ2 + a3Ȧ.

Now noting that λ < cβ(I1 + η1I2 + ξA) and S(t) < b for all t ≥ 0, it follows that we
can write:

V̇ < Q1I1 +Q2I2 +Q3A,

where the coefficients Qi are as follows:

Q1 = a1[cβb − (µ+ σ)] + a2σ,

Q2 = a1η1cβb− a2(µ + ρ) + a3ρ,

Q3 = a1ξcβb − a3(µ + δ).

Now we notice that substituting the values of a1, a2, a3 and ξ, we obtain the following:

Q2 = a1η1cβb − cβb[η1(µ+ δ) + ξρ](µ+ ρ) + a3ρ

= a1η1cβb − a1η1cβb − cβbρξ(µ + ρ) + cβbξ(µ + ρ)ρ

= 0.

Likewise for Q3 we find:

Q3 = ξcβb(µ + ρ)(µ + δ) − ξcβb(µ + ρ)(µ + δ)

= 0.

Finally we turn to Q1.

Q1 = a1cβb + a2σ − a1(µ + σ)

= a1(µ+ σ)

[

cβb

(µ+ σ)
+

a2σ

a1(µ+ σ)
− 1

]

= a1(µ+ σ)

[

cβb

(µ+ σ)
+

cβb[η1(µ+ δ) + ρξ]σ

(µ+ ρ)(µ + δ)(µ + σ)
− 1

]

= a1(µ+ σ)

[

cβb

µ+ σ

{

1 +
η1σ

µ + ρ
+

ρξσ

(µ + ρ)(µ + δ)

}

− 1

]

= (µ + ρ)(µ + δ)(µ+ σ)[R0 − 1]

< 0,

since R0 < 1. It follows that V is a Lyapunov function as asserted. This completes the
proof.

3 Sensitivity Analysis of Model Parameters and State

Variables

Knowledge of the sensitivity of parameters is quite useful for decision making and
intervention purposes, because it helps in making recommendations more credible and
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understandable. We proceed with such sensitivity analysis towards investigating the
model robustness to parameter values. The basic reproduction number is pivotal in
determining the stability of the disease free equilibrium. It is thus important for us to
understand the behavior of R0 with respect to the different parameters. We shall also
study the sensitivity of the endemic equilibrium point. To carry out this analysis, we
use the normalised forward sensitivity index of an invariant with respect to a parameter,
as described in Makinde and Okosun (2011) for instance. The sensitivity of an invariant
U with respect to a parameter ζ is given by:

ζ

U
×
∂U

∂ζ
.

It should also be noted that the same sensitivity index has another significance. We
note that when applying a model to a real life situation, the parameters need to be
estimated from data. Accuracy could be a problem, and the sensitivity index serves as
an indicator of the effect of an error in the parameters’ estimation.

3.1 Sensitivity Analysis of R0

Table 1: Sensitivity indices of R0

Parameter description Parameter value Sensitivity

Partner acquisition rate c +3.57

Probability of transmission β +3.57

Natural death rate µ -0.04

Rate of developing AIDS ρ -0.02

Rate of becoming symptomatic σ -0.003

Enhancement factor η1 0.002

Proportion of withdrawals by AIDS q -0.0007

Computation of the partial derivatives is quite routine and we skip the details. The
parameter values as from Nyabadza et al. (2010) are shown in Table 3. In Table 1, the
parameters are arranged from the most sensitive to the least for the given base values
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of the parameters as in the list. The most sensitive parameters here are the partner
acquisition rate c and probability of transmission β, followed by the natural death rate
of individual µ. Other important parameters include the rate ρ of developing to AIDS
with -0.02. The least sensitive parameter is the proportion of withdrawals by AIDS
cases q.

The sensitivity index of R0 with respect to the partner acquisition rate c is 3.5715,
implying that decreasing (or increasing) c by 10% will result in R0 decreasing (or
increasing) by approximately 35.7%. We can similarly analyze the effect of incremental
changes in other parameters.

3.2 Sensitivity Analysis of The Endemic Equilibrium State

Table 2: Sensitivity indices of state variables to model parameters.

S∗ I∗1 I∗2 A∗

β −2.28 1.86 3.71

β −2.28 1.86 3.71 6.19

ρ 0.48 −0.001 0.22 −1.85

µ −1.98 −0.01 0.22 0.46

α −0.70 1.00 2.00 0.33

η1 0.05 0.0001 0.0002 0.00004

Here we derive the sensitivity of the endemic equilibrium values of the state variables
to each of the parameters described in Table 2. In Table 2, the first row indicates that
for the probability of transmission β, the class A∗ is most sensitive with class I∗1 as the
least. This means that an increase (or decrease) of β by 10% will increase (or decrease)
A∗ by 61.9% and I∗1 by 18.6%. In the table we have only listed the parameters that
yield significantly high sensitivity indices, together with η1, to show its relatively low
sensitivity.

4 Optimal Control Analysis

In this section, we investigate for the optimal effort on public health education that
would be needed to control HIV/AIDS, and we use optimal control theory. The control
function is α(t) and the set of admissible controls is:

U = {α(·)| α(t)is measurable and 0 ≤ α ≤ 1}.
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We propose an objective functional J through which we shall minimize the number of
human infectives and AIDS individuals, balanced against the effort on public health
education. The function J takes the form

J =

∫ τ

0

(M0I1 +M1I2 +M2A+M3α
2)dt

where M0,M1,M2,M3 are positive weights, for some τ > 0. With the given objec-
tive function J(α), our goal here is to minimize in a weighted manner, the numbers
I1(t), I2(t) and A(t), while also minimizing the cost of control α(t). We choose to
use α2 (i.e., quadratic rather than linear) to ensure that the Hamiltonian (see below)
is convex in the control variable. This choice is commonly used in the literature on
epidemic control. Solving the optimization problem requires the introduction of the
Hamiltonian function H, which for our problem is as follows:

H = M0I1 +M1I2 +M2A+M3α
2 + ΦS [µb− µS − λ(I, A)S]

+ΦI1
[λ(I, A)S − (µ + σ)I1 ] + ΦI2

[σI1 − (µ + ρ)I2]

+ΦA[ρI2 − (µ+ δ)A], (2)

where ΦS ,ΦI1
,ΦI2

and ΦA are the adjoint variables. We now proceed towards solving
the optimal control problem.

THEOREM 2. For optimality, the adjoint variables ΦS ,ΦI1
,ΦI2

and ΦA satisfy the
following differential equations:































−dΦS

dt
= µΦS + (ΦS − ΦI1

)(I1 + I2η1 + (1 − q)A)ψ,

−
dΦI1

dt
= −M0 + (µ+ σ)ΦI1

− σΦI1
+ (ΦS − ΦI1

)ψ,

−
dΦI2

dt
= −M1 − ρΦA + (µ + ρ)ΦI2

+ (ΦS − ΦI1
)η1ψ,

−dΦA

dt
= −M2 + (δ + µ)ΦA + (ΦS − ΦI1

)(1 − q)η2ψ,

(3)

where

ψ =
c β

(1 + α (I1 + I2 η1 +A (1− q) η2))
2

with transversality conditions

s(τ ) = ΦI1
(τ ) = ΦI2

(τ ) = ΦA(τ ). (4)

The optimal control takes the form:

α∗ = max
{

0,min
(

1,
c S β (I1 + I2 η1 + A (1 − q) η2)

2
ΦS

2M3

(

1 + α (I1 + I2 η1 + A (1 − q) η2)
2

) (ΦS − ΦI1
)
) }

. (5)

PROOF. An optimal control does exist due to the convexity of the integrand of J
with respect to α, boundedness of the state solutions, and the Lipschitz property of
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the state system with respect to the variables, see Lenhart and Workman (2007) for
instance. It suffices for us to check the first order conditions. Then firstly, the differen-
tial equations describing the adjoint variables are obtained by partial differentiation of
the Hamiltonian function with respect to the state equations. This yields the system
(6) of ode’s. Secondly, the first order conditions require that α must minimize H. So
we proceed to calculating ∂H

∂α
. By a standard argument involving the latter partial

derivative (set to zero) and the bounds on the controls, we get

α∗ =







0 if ζ∗2 ≤ 2,
ζ∗2 if 0 < ζ∗2 < 1,
1 if ζ∗

2
≥ 1,

where

ζ∗
2

=
c S β (I1 + I2 η1 +A (1 − q) η2)

2 ΦS

2M3

(

1 + α (I1 + I2 η1 +A (1 − q) η2)
2
) (ΦS − ΦI1

) . (6)

It follows that the optimal control α∗(t) does in fact take the form as asserted in the
theorem. This completes the proof.
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5 Numerical Results and Discussion

We generate some numerical solutions to our control problem using a fourth order
Runge-Kutta scheme. This method is also tested for convergence. We iteratively solve
for the state variables in the forward way given the initial values, and the adjoint vari-
ables in a backward way due to having terminal values. The method is the same as
described in Lenhart and Workman (2007). A number of different numerical simula-
tions are carried out for comparison in Figures 1, 2 and 3. The values of parameters
used in the simulations are presented in Table 3 and some of these parameters are
varied to test the response of the model. We illustrate the effects of public health
education (α) on each of the classes. We also numerically solve for the optimal solution
and test the effect of variation in the values of different parameters.

The values of the parameters M0,M1, M2, M3 are for public health management to
decide (they are not dependent on the model). Here we choose a set of weight factors
M1 = 920, M2 = 25, M3 = 80 together with initial values (in millions) S(0) = 0.5,
I1(0) = 0.7, I2(0) = 0.6, A(0) = 0.06.

5.1 The Optimal Solution Versus α = 0.

Here the optimal effort on public health education (α∗) is compared with the case of
α = 0. In both cases the infected classes vanishes to zero. In Fig 1(a,b,c) we observe
that the levels to which the (α = 0)-curves have decreased at t = 60, will already have
been attained at t = 50 in the case of α = α∗.

5.2 Effects of Infectives’ Withdrawal From Sexual Activities.

In Fig 1(d) we observe the effect of infectives’ withdrawal from sexual activity on each
individual class by setting q = 0.9 and optimal control. Asymptomatic infectives I1
can be seen to more or less vanishes at t = 40, symptomatic infectives I2 first increases
from initial 0.6 million to 0.7 million at the early stage but later decreases to zero at
t = 68, while AIDS individuals A decreases to zero at t = 70.

5.3 Effects of Infectives’ Withdrawal From Sexual Activities on

Asymptomatic Individuals

In Fig. 2, we use α = α∗ and observe the effect of infectives’ self-withdrawal (q)
from sexual activities on asymptomatic individuals. We first notice that if there is no
withdrawal, i.e. when q = 0, then the number of asymptomatic infective individuals at
time t = 50 is still at approximately 85000. For q = 0.5, the number of asymptomatic
infective individuals decreases slightly faster, reaching approximately 75000 at t = 50
while the number gets much closer to vanishing at t = 50 when withdrawal is at the
reasonably high level of q = 0.9. This implies that infectives’ withdrawal from sexual
activities has a serious impact in reducing the epidemic of HIV/AIDS.



616 Sensitivity and Optimal Control Analysis of HIV/AIDS Model

(a)

0 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

Time (years)

As
ym

pt
om

at
ic

 In
di

vi
du

al
s 

(m
illi

on
s)

 

 

α = 0

α optimal

(b)

0 10 20 30 40 50 60

0.1

0.2

0.3

0.4

0.5

0.6

Time (years)

Sy
m

pt
om

at
ic

 In
di

vi
du

al
s 

(m
illi

on
s)

 

 

α = 0

α optimal

(c)

0 10 20 30 40 50 60 70 80

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (years)

AI
D

S 
In

di
vi

du
al

s 
(m

illi
on

s)

 

 

α = 0

α optimal

(d)

0 10 20 30 40 50 60 70 80

0.1

0.2

0.3

0.4

0.5

0.6

Time (years)

In
di

vi
du

al
s 

(m
illi

on
s)

 

 

I
1

I
2

A

Figure 1: Simulations of the optimal solution.
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Figure 2: Simulations of the HIV/AIDS model showing the effect of withdrawing from
sexual activities on asymptomatic individuals.

5.4 Effects of Transmission Probability and Partner Acquisi-

tion Rate on Asymptomatic Individuals

In these simulations again we use α = α∗. In Fig. 3(a), we show the effect of the
transmission probability (β) on asymptomatic individuals. We observe that the higher
the transmission probability, the longer the disease’s prevalence in the population. Fig.
3(b) also explains that the disease persistence increases along with increase in partner
acquisition rate.

6 Conclusions

In this paper, we studied the control, stability and sensitivity of an HIV model with
public health and infectives’ withdrawal from sexual activity. We perform sensitivity
analysis on the reproduction number and observed that the acquisition rate c and
probability of transmission β are the most sensitive parameters. This analysis was also
carried out on the endemic equilibrium point (when applicable) and the results show,
for instance, that probability of transmission β is more sensitive on the A-class than
on the I1-class.

We observed the effect of public health campaigns and infectives withdrawal on the
transmission of the disease by performing optimal control analysis on the model. Opti-
mal control provides us with a means to calculate the levels of public health education
effort, as a function of time, for the best results in controlling the spread of the disease.
Our numerical results illustrate the responses of the model to variations in parameter
values. So, for instance, we observed that infectives’ self-withdrawal play a major role
in reducing the HIV/AIDS scourge in a population.

In general this study significantly expands the work done in Nyabadza et al. (2010).
In particular, it contributes to understanding HIV population dynamics, and informing
optimal strategies for intervention with public health education. The model presented
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Figure 3: Simulations of the effects of transmission probability and partner acquisition
rate on asymptomatic individuals

in this study did not consider the effects of therapeutic intervention strategies (such as
the use of antiretroviral drugs) in the transmission dynamics of HIV/AIDS. Of course,
there is a need to analyze models that are more complex, combining pharmaceutical
treatment with preventive measures such as education and many other. The severity
of the HIV problem necessitates the most serious global effort towards the control of
the virus and protection of humans against it.
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