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Abstract

This work studies the stabilization problem of a wave equation with a tip
mass, taking into account of Fourier heat conduction, which undergoes unknown
bounded disturbance at tip mass. Here the nonlinear feedback control law is
used to cancel the effect of external disturbances. We have proved the well-
posedness of the close-loop system by the maximal monotone operator theory and
the variational principle. Further, we have established the exponential stability
of the system by construction of a suitable Lyapunov functional.

1 Introduction

In the past decades, due to extensive applications of the wave equation in engineering
and mathematical control theory, the stabilization of wave equation have received great
attention. The boundary control due to its easily actual operation in engineering, is
widely used as the major control strategy for the dynamic system that is governed by
the partial differential equations. In order to stabilize wave equation, various control
techniques have been developed for instance, distributed control [15], boundary control
[6], sliding mode control (SMC) and active disturbance rejection control (ADRC) [4],
[17]. However, a small disturbance can make these controller invalid such as a time
delay or an external disturbance. Guo and Jin in [4] used sliding mode control (SMC)
and the active disturbance rejection control (ADRC) to deal with a one-dimensional
anti-stable wave equation subject to a boundary disturbance. Guo and Zhou extended
this method to multi-dimension wave equation, see [5]. Guo and Jin in [7] discussed
the boundary output feedback for 1-d wave equation with boundary disturbance. For
similar results, we can refer to [2], [3], [6], [10], [11] and [12]. It is observed that the
disturbances are uniformly bounded in all papers mentioned above.
In this paper, we consider the stabilization problem of the following wave equation

with a tip mass which undergoes the disturbance at the tip mass. The dynamic behavior
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attached with Fourier heat conduction is thus governed by the following system of PDE:
ytt − yxx − κθx = 0
θt − θxx − κyxt = 0

}
, x ∈ (0, 1), t > 0,

yx(1, t) +mytt(1, t) = u(t) + d(t), t > 0,
y(0, t) = 0, θ(1, t) = 0 = θ(0, t), t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), θ(x, 0) = θ0(x), x ∈ (0, 1),

(1)

where the symbols yt denotes the derivative of y with respect to time variable t and yx
the derivative of y with respect to spacial variable x, the coeffi cient κ > 0 is a small
constant satisfying κ < 1, m > 0 is the tip mass, u(t) is the boundary control force
and d(t) is the unknown external disturbance satisfying |d(t)| ≤M , M > 0.
It is well known that if there is no disturbance, that is, d(t) ≡ 0, the system (1) can

be stabilized exponentially (cf. [14]) under the feedback control law:

u(t) = −αyxt(1, t)− βyt(1, t),

where α, β > 0 are suitable reals.
In the case of d(t) 6= 0 identically but uniformly bounded, Ge and his co-authors

in [8, 9] established the stabilization by using an adaptive boundary control technique.
They proved the closed-loop system is ultimately bounded by means of observation of
the effect of the external disturbances taking into account of the system parametric
uncertainties and disturbances. In this paper, we will design nonlinear and non-smooth
feedback control law for (1) without Fourier heat conduction such that the system is
stabilized exponentially. It is well known that the solvability and stability analysis of a
system with discontinuous nonlinear term are often more diffi cult than that of a linear
system. In fact, the nonlinear feedback control law will make our work more diffi cult.
In this work, we use the semigroup theory [16] to prove the well-posedness of the closed-
loop system and the Lyapunov functional method to establish the exponential stability
of the system.
The rest is organized as follows. In Section 2, we design the nonlinear feedback

controller which is derived from a Lyapunov functional. In Section 3, we study the
well-posedness of the resulting closed-loop system via the theory of nonlinear maximal
monotone operators and the variational principle. In Section 4, we finally prove that
the closed-loop system is exponentially stable by the Lyapunov functional approach.

2 Boundary Feedback Controller

In this section, we design a boundary feedback controller based on a Lyapunov func-
tional that relates to the total energy of the system. For simplicity, in the sequel, we
always use the symbols yt (or ẏ) to denote the derivative of y with respect to time
variable t and yx the derivative of y with respect to spacial variable x.
We introduce an auxiliary function η(t) as

η(t) = yx(1, t) + αyt(1, t), α > 0. (2)
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It follows from the third equation of (1) that

mη̇(t) = myxt(1, t) + α[−yx(1, t) + u(t) + d(t)].

Then, the system (1) turns into

ytt − yxx − κθx = 0
θt − θxx − κyxt = 0

}
, x ∈ (0, 1), t > 0,

mη̇(t) = myxt(1, t) + α(−yx(1, t) + u(t) + d(t)), t > 0,
η(t) = yx(1, t) + αyt(1, t),
y(0, t) = 0, θ(1, t) = 0 = θ(0, t), t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), θ(x, 0) = θ0(x), x ∈ (0, 1),

(3)

The Lyapunov functional for (3) is taken as follows:

E =
1

2

∫ 1

0

[y2t + y2x + θ2]dx+
m

2
η2(t).

Thus, we have

Ė(t) = yx(1, t)yt(1, t) +mη(t)η̇(t)−
∫ 1

0

θ2x dx

=
1

2α

[
y2x(1, t) + α2y2t (1, t) + 2αyx(1, t)yt(1, t)

]
− α

2
y2t (1, t)− 1

2α
y2x(1, t)

+mη(t)η̇(t)−
∫ 1

0

θ2x dx

=
1

2α
η2(t)− α

2
y2t (1, t)− 1

2α
y2x(1, t)

+η(t)
[
myxt(1, t) + α[−yx(1, t) + u(t) + d(t)]

]
−
∫ 1

0

θ2x dx. (4)

Now, we design the feedback control as

u(t) = −αyt(1, t)− βyxt(1, t)−Msgn(η(t)), (5)

where α, β > 0 satisfying αβ = m, and the symbol sgn is a multi-valued function
defined by

sgn(x) =

 1, x > 0,
(−1, 1), x = 0,
−1, x < 0.

(6)

Under the feedback control (5), the expression (4) becomes

Ė(t) =
1

2α
η2(t)− α

2
y2t (1, t)− 1

2α
y2x(1, t)

+η(t) [myxt(1, t) + α(−yx(1, t) + u(t) + d(t))]−
∫ 1

0

θ2x dx

=
1

2α
η2(t)− α

2
y2t (1, t)− 1

2α
y2x(1, t)− αη2(t)− αMη(t)sgn(η(t))
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+αη(t)d(t)−
∫ 1

0

θ2x dx

= −
(
α− 1

2α

)
η2(t)− α

2
y2t (1, t)− 1

2α
y2x(1, t)− αM |η(t)|

+αη(t)d(t)−
∫ 1

0

θ2x dx.

In view of (2), (5) and (6), we have

βη̇(t) = −η(t)−Msgn(η(t)) + d(t). (7)

Under the inclusion of the differential equation (7), the closed-loop system is equivalent
to the following

ytt − yxx − κθx = 0
θt − θxx − κyxt = 0

}
, x ∈ (0, 1), t > 0,

βη̇(t) = −η(t)−Msgn(η(t)) + d(t) t > 0,
η(t) = yx(1, t) + αyt(1, t),
y(0, t) = 0, θ(1, t) = 0 = θ(0, t), t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), θ(x, 0) = θ0(x), x ∈ (0, 1).

(8)

3 Well-Posedness of the Closed-Loop System

In this section, we will consider the existence and uniqueness of the solution of the
closed-loop system (8). For this purpose, we introduce the state space as

H = H1
∗ (0, 1)× L2(0, 1)× L2(0, 1)× R,

where H1
∗ (0, 1) = {y ∈ H1(0, 1) : y(0) = 0} and L2(0, 1), H1(0, 1), H1

0 (0, 1) are defined
as usual. In H, the inner product is defined as

〈Y1, Y2〉H =

∫ 1

0

[f1xf2x + g1g2 + τ1τ2] dx+Kη1η2,

for any Yi = (fi, gi, τ i, ηi)
T ∈ H, i = 1, 2, where K > β2

2m is a constant. Clearly,
(H, ||.||H) is a Hilbert space.
Now, we define an operator A : D(A) ⊂ H → H as

AY =


g

fxx + κτx
τxx + κgx

− 1
β (η +Msgn(η))

 , ∀Y = (f, g, τ , η)T ∈ D(A). (9)

Thus the closed-loop system (8) can be written as{
Ẏ −AY = s(t), t > 0,
Y (0) = (y0, y1, θ0, η0)

T ,
(10)



132 Stability of Wave Equation with A Tip Mass

where s(t) = (0, 0, 0, d(t)β ). So, instead of dealing with (8), we will consider (10) in the
Hilbert space H, with the domain D(A) of the operator A given by

D(A) =
{

(f, g, τ , η)T ∈ H2(0, 1) ∩H1
∗ (0, 1)×H1

0 (0, 1)× L2(0, 1)× R :

η = fx(1) + αg(1), τ(0) = 0 = τ(1)
}
.

We are now ready to state our existence result as follows.

THEOREM 1. Let A be defined as in (9). Then for any initial value Y0 ∈ D(A),
there is a unique solution to the system (8).

PROOF. Firstly, we prove −A is monotone. For any Yi = (fi, gi, τ i, ηi) ∈ D(A),
i = 1, 2, we have

〈AY1 −AY2, Y1 − Y2〉H

=

∫ 1

0

(g1x − g2x)(f1x − f2x)dx+

∫ 1

0

[(f1xx − f2xx) + κ(τ1x − τ2x)] (g1 − g2)dx

+

∫ 1

0

[(τ1xx − τ2xx) + κ(g1x − g2x)] (τ1 − τ2)dx+K(η̇1 − η̇2)(η1 − η2)

=

∫ 1

0

(g1x − g2x)(f1x − f2x)dx+

∫ 1

0

(f1xx − f2xx)(g1 − g2)dx

+κ

∫ 1

0

(τ1x − τ2x)(g1 − g2)dx+

∫ 1

0

(τ1xx − τ2xx)(τ1 − τ2)dx

+κ

∫ 1

0

(g1x − g2x)(τ1 − τ2)dx−
K

β
(η1 − η2)2

−KM
β

(η2 − η1)(sgn(η2)− sgn(η1))

= (g1(1)− g2(1))(f1x(1)− f2x(1))−
∫ 1

0

(τ1x − τ2x)2dx

−K
β

(η1 − η2)2 −
KM

β
(η2 − η1)(sgn(η2)− sgn(η1))

= −α(g1(1)− g2(1))2 + (η1 − η2)(g1(1)− g2(1))−
∫ 1

0

(τ1x − τ2x)2dx

−K
β

(η1 − η2)2 −
KM

β
(η2 − η1)(sgn(η2)− sgn(η1))

= −α
[
(g1(1)− g2(1))− 1

2α
(η1 − η2)

]2
−
[
K

β
− 1

4α

]
(η1 − η2)2

−
∫ 1

0

(τ1x − τ2x)2dx− KM

β
(η2 − η1)(sgn(η2)− sgn(η1)).

Since αβ = m and K > β2

2m , we have
K
β > β

2m > β
4m = 1

4α . Therefore,

〈AY1 −AY2, Y1 − Y2〉H ≤ 0.
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Thus −A is monotone.
Next, we show that −A is maximal. According to the definition of the maximal

operator, we only need to show that R(I −A) = H, i.e., for any F = (u, v, φ, w) ∈ H,
there exist Y = (f, g, τ , η) ∈ D(A) such that F = AY, i.e.,

f − g = u,
g − fxx − κ τx = v,
τ − τxx − κ gx = φ,
η + 1

β (η +Msgn(η)) = w,

(11)

with the boundary conditions  f(0) = 0,
fx(1) = η − α g(1),
τ(0) = 0 = τ(1).

(12)

Solving fourth equation of (11), we have

η =


β w−M
β+1 , when w > M

β ,

0, when w ∈
[
−Mβ ,

M
β

]
,

β w+M
β+1 , when w < − M

β .

Now, from the first equation of (11), we get g = f − u. Hence, in view of the second
and third equations of (11) with the boundary conditions in (12), we get

f(x)− fxx(x)− κτx(x) = v(x) + u(x)
τ(x)− τxx(x)− κfx(x) = φ(x)− κux(x)

}
, x ∈ (0, 1), t > 0,

f(0) = 0,
fx(1) = η − αg(1),
η(0) = 0 = τ(1).

(13)

To solve (13), we consider the bilinear form

M :
(
H1
∗ (0, 1)×H1

0 (0, 1)
)
×
(
H1
∗ (0, 1)×H1

0 (0, 1)
)
→ R

given by

M((f, τ), (h, σ)) =

∫ 1

0

f(x)h(x) dx+

∫ 1

0

fx(x)hx(x) dx+ κ

∫ 1

0

τ(x)hx(x) dx

+αf(1)h(1) +

∫ 1

0

τ(x)σ(x) dx+

∫ 1

0

τx(x)σx(x) dx

+κ

∫ 1

0

f(x)σx(x) dx

and the linear form J : H1
∗ (0, 1)×H1

0 (0, 1)→ R given by

J (h, σ) =

∫ 1

0

(u(x) + v(x))h(x) dx+ (αu(1) + η)h(1) +

∫ 1

0

(φ(x)− κux(x))σ(x) dx.
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Multiplying both side of the first equation of (13) by any function z(x) ∈ H1
∗ (0, 1), the

second equation by ξ(x) ∈ H1
0 (0, 1) and then integrating over [0, 1], we get a variational

equation ∫ 1

0

[f(x)z(x) + fx(x)zx(x) + κ τ(x)zx(x)] dx+ αf(1)z(1)

+

∫ 1

0

[τ(x)ξ(x) + τx(x)ξx(x) + κ f(x)ξx(x)] dx

=

∫ 1

0

(u(x) + v(x))z(x) dx+ (αu(1) + η)z(1) +

∫ 1

0

(φ(x)− κux(x))ξ(x) dx.

i.e.,M((f, τ), (z, ξ)) = J (z, ξ). Also,M and J satisfy the following conditions:

I.M is bounded on H1
∗ (0, 1)×H1

0 (0, 1), since

|M((f, τ), (h, σ))|

≤
∣∣∣∣∫ 1

0

[f(x)h(x) + fx(x)hx(x)] dx+ αf(1)h(1)

∣∣∣∣+

∣∣∣∣∫ 1

0

[τ(x)σ(x) + τx(x)σx(x)] dx

∣∣∣∣
+

∣∣∣∣κ∫ 1

0

[τ(x)hx(x) + f(x)σx(x)] dx

∣∣∣∣
≤

(∫ 1

0

[
|f(x)|2 + |fx(x)|2 + α|f(1)|2

]
dx

) 1
2
(∫ 1

0

[
|h(x)|2 + |hx(x)|2 + α|h(1)|2

]
dx

) 1
2

+

(∫ 1

0

[
|τ(x)|2 + |τx(x)|2

]
dx

) 1
2
(∫ 1

0

[
|σ(x)|2 + |σx(x)|2

]
dx

) 1
2

+κ

(∫ 1

0

|τ(x)|2dx
) 1

2
(∫ 1

0

|hx(x)|2dx
) 1

2

+ κ

(∫ 1

0

|f(x)|2dx
) 1

2
(∫ 1

0

|σx(x)|2dx
) 1

2

≤ (α+ 1)||f ||2H1
∗(0,1)

||h||2H1
∗(0,1)

+ ||τ ||2H1
0 (0,1)

||σ||2H1
0 (0,1)

+κ
(
||hx||2H1

∗(0,1)
||τ ||2H1

0 (0,1)
+ ||f ||2H1

∗(0,1)
||σx||2H1

0 (0,1)

)
.

II.M is coercive, because

|M((f, τ), (h, σ))| =

∫ 1

0

[
|f(x)|2 + |fx(x)|2 + |τ(x)|2 + |τx(x)|2

]
dx+ α|f(1)|2

≥
(
||f ||2H1

∗(0,1)
+ ||τ ||2H1

0 (0,1)

)
.

III. J is bounded, i.e.,

|J (h, σ)|

=

∣∣∣∣∫ 1

0

(u(x) + v(x))h(x) dx+ (αu(1) + η)h(1) +

∫ 1

0

(φ(x)− κux(x))σ(x) dx

∣∣∣∣
≤

∣∣∣∣∫ 1

0

(u(x) + v(x))h(x) dx+ (αu(1) + η)h(1)

∣∣∣∣+

∣∣∣∣∫ 1

0

(φ(x)− κux(x))σ(x) dx

∣∣∣∣
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≤
(∫ 1

0

(u(x) + v(x))2 + (αu(1) + η)2
) 1

2
(∫ 1

0

(h(x))2 + (h(1))2
) 1

2

+

(∫ 1

0

(φ(x)− κux(x))2
) 1

2
(∫ 1

0

(σ(x))2
) 1

2

≤ C1

(∫ 1

0

[|h(x)|2 + |hx(x)|2]dx
) 1

2

+ C2

(∫ 1

0

|σ(x)|2dx
) 1

2

= C1||h||H1
∗(0,1)

+ C2||σ(x)||H1
0 (0,1)

.

The Lax-Milgram theorem on the space H1
∗ (0, 1)×H1

0 (0, 1) for the functionalsM and
J , yields that (13) has a unique solution (f, τ) ∈ H1

∗ (0, 1)×H1
0 (0, 1). Since u, v and φ

are in L2(0, 1), so f ∈ H2(0, 1) ∩H1
∗ (0, 1) and τ ∈ H1

0 (0, 1). Hence, R(I −A) = H.
Thus, we have proved that −A is a maximal monotone operator and A generates

a C0 nonlinear semigroup, see [18]. Then for any Y0 ∈ D(A) and s ∈ L1(0, 1 : H), the
system (8) has a unique solution, see [1]. This ends the proof.

4 Stability of the Closed-Loop System

In this section, we shall discuss the exponential stability of the closed-loop system (8).
To prove the exponential stability of (8), we first need the following inequalities and
lemmas as:
I. For any real number γ > 0, we have Schwartz’s inequality (cf. [13])∫ 1

0

u v ≤
∫ 1

0

|u v| ≤ 1

2

(
γ

∫ 1

0

u2 +
1

γ

∫ 1

0

v2
)
.

II. For any u(x, t), x ∈ (0, 1), t > 0 satisfying the boundary conditions u(0, t) = 0 =
u(1, t), we have Poincaré’s Inequality (cf. [13])∫ 1

0

u2 ≤ 1

π2

∫ 1

0

ux
2.

Now, we define the energy functional of the system (8) as

E(t) =
1

2

∫ 1

0

[yt
2 + yx

2 + θ2]dx+
K

2
η2(t).

Also, we define another functional associated with energy of the system (8) as

V (t) = E1(t) + E2(t) +G(t), (14)

where

E1(t) =
1

2

∫ 1

0

[yt
2 + yx

2 + θ2]dx, (15)

E2(t) =
K

2
η2(t),
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G(t) = ρ

∫ 1

0

x yt(x, t) yx(x, t)dx, 0 < ρ < 1.

Applying Schwartz’s inequality and Poincaré’s inequality, we have the following lemma.

LEMMA 1. Let V (t), E1(t) be defined as in (14) and (15). Then there exist positive
constants c1, c2 such that

c1
(
E1(t) + η2(t)

)
< V (t) < c2

(
E1(t) + η2(t)

)
. (16)

PROOF. Applying Schwartz’s inequality, we have the estimate

|G(t)| ≤ ρ

2

∫ 1

0

[y2t (x, t) + y2x(x, t)]dx ≤ ρE1(t).

Seting

c1 = min

{
1− ρ, K

2

}
, c2 = max

{
1 + ρ,

K

2

}
,

we have
c1
(
E1(t) + η2(t)

)
< V (t) < c2

(
E1(t) + η2(t)

)
.

This ends the proof.

Now, we shall discuss the stability of the system (8) with the help of V (t) as defined
in (14).

THEOREM 2. Let us assume that |d(t)| < M, M > 0. If β in control law (5)
satisfies the inequality β2 < 2mK and ρ ≤ min {1, α, 1/α} , then the system (8) is
exponentially stable.

PROOF. Let y(x, t) and θ(x, t) be the solutions of (8) and V (t) be defined in (14).
Noting that αβ = m, a simple calculation gives

V̇ (t) = Ė1(t) + Ė2 + Ġ(t),

where

Ė1(t) = yx(1, t) yt(1, t)−
∫ 1

0

θ2x dx

=
1

2α
η2(t)− α

2
y2t (1, t)− 1

2α
y2x(1, t)−

∫ 1

0

θ2x dx,

Ė2(t) = K η(t) η̇(t) = −K
β
η2(t)− KM

β
|η(t)|+ K

β
η(t) d(t),

and

Ġ(t) = ρ

∫ 1

0

x yxt yt dx+ ρ

∫ 1

0

x yx ytt dx
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= ρ

∫ 1

0

x yxt yt dx+ ρ

∫ 1

0

x yx[yxx + κθx]dx

=
ρ

2
[y2t (1) + y2x(1)]− ρ

2

∫ 1

0

[y2t + y2x]dx+ ρκ

∫ 1

0

x yx θx dx

≤ ρ

2
[y2t (1) + y2x(1)]− ρ

2

∫ 1

0

[y2t + y2x]dx+
ρκ

2

∫ 1

0

[y2x + θ2x]dx

=
ρ

2
[y2t (1) + y2x(1)]− ρ

2

∫ 1

0

y2t dx+
ρκ

2

∫ 1

0

θ2x dx−
(1− κ)ρ

2

∫ 1

0

y2x dx.

Thus, we have

V̇ (t) ≤ 1

2α
η2(t)− α

2
y2t (1, t)− 1

2α
y2x(1, t)−

∫ 1

0

θ2x dx−
K

β
η2(t)

−KM

β
|η(t)|+ K

β
η(t) d(t) +

ρ

2
[y2t (1) + y2x(1)]− ρ

2

∫ 1

0

y2t dx

+
ρκ

2

∫ 1

0

θ2x dx−
(1− κ)ρ

2

∫ 1

0

y2x dx

≤
(

1

2α
− K

β

)
η2(t) +

(ρ
2
− α

2

)
y2t (1) +

(
ρ

2
− 1

2α

)
y2x(1)

−
(

1− ρκ

2

)∫ 1

0

θ2x dx−
ρ

2

∫ 1

0

y2t dx−
KM

β
|η(t)|+ K

β
η(t) d(t)

− (1− κ)ρ

2

∫ 1

0

y2x dx

≤
(

1

2α
− K

β

)
η2(t) +

(ρ
2
− α

2

)
y2t (1) +

(
ρ

2
− 1

2α

)
y2x(1)

−
(

1− ρκ

2

)
π2
∫ 1

0

θ2 dx− ρ

2

∫ 1

0

y2t dx−
(1− κ)ρ

2

∫ 1

0

y2x dx.

Note that αβ = m and K >
β2

2m
. So

K

β
>

β

2m
=

1

2α
. Also, we choose ρ ∈ (0, 1) such

that

ρ < min

{
α,

1

α

}
i.e.,

ρ

2
− α

2
< 0,

ρ

2
− 1

2α
< 0.

Thus, in view of our assumption 0 < κ < 1, we have

V̇ (t) ≤ −
(
K

β
− 1

2α

)
η2(t)− ρ

2

∫ 1

0

y2t dx−
(

1− ρκ

2

)
π2
∫ 1

0

θ2 dx

− (1− κ)ρ

2

∫ 1

0

y2x dx

≤ −min

{(
K

β
− 1

2α

)
, ρ, (1− κ)ρ, (2− ρκ)π2

}(
E1(t) + η2(t)

)
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≤ −
min

{(
K
β −

1
2α

)
, ρ, (1− κ)ρ, (2− ρκ)π2

}
c2

V (t). (17)

Integrating (17) over [0, t], we get

V (t) ≤ e−λ tV (0),

where

λ =
min

{(
K
β −

1
2α

)
, ρ, (1− κ)ρ, (2− ρκ)π2

}
c2

.

Finally, we observe that

min{1,K}(E1(t) + η2(t)) ≤ E(t) ≤ max{1,K}(E1(t) + η2(t)).

So, we have

E(t) ≤ max{1,K}
c1

V (t) ≤ max{1,K}
c1

e−λ tV (0).

This ends the proof.

5 Conclusions

In this work, we have studied the stabilization problem of a wave equation with a
tip mass coupled with Fourier heat conduction, under the assumption that there is
a disturbance on the tip mass. In order to stabilize the system, a control force is
applied at the tip mass end, which consists of two parts: one part makes the system
exponentially stable, if the disturbance is absent; the other part is used to reject the
disturbances. Based on the observation of disturbances, we adopt a positive feedback
controller with a suitable anti-disturbance term. Designing of such a controller, we have
proved the well-posedness of the system and finally established the exponential stable
result by constructing suitable Lyapunov functional. Design of such type controller can
be extended to other models also.

Acknowledgements. The authors wish to thank the reviewers for their valuable
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