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Abstract

The aim of this work is to establish the existence of solution to a non commuta-
tive stochastic integral inclusion. By using matrix elements of quantum stochastic
calculus of Hudson-Parthasarathy type, an Aumann quantum stochastic integral
was formulated. As an application, the existence of solution to quantum stochas-
tic control problem was established via a noisy Ricatti differential inclusion.

1 Introduction

Quantum stochastic differential equations (gsde) of Hudson-Parthasarathy quantum
stochastic calculus had undergone various reformulations [8], [6], [3]. These equations
have applications in quantum optics, open quantum systems, quantum measurements,
etc. Likewise quantum stochastic control and quantum filtering problems had attracted
the interest of authors [7]. But of greater interest to us is the formulation of operator-
valued stochastic control in Fock space with applications to orbit-tracking problems
as discussed in [4]. The optimal control problem for the non commutative stochas-
tic differential equations was established and the work had since been extended. In
another development, differential inclusions have applications to classical control the-
ory and gave a wider applications of set-valued analysis to optimal control problems
[9]. In classical differential inclusions, Aumann integral [2] played a vital role in the
formulation of integral inclusions for measurable set-valued maps, see [1], [5].

The aim of this work is to establish non commutative stochastic integral inclusions
via set-valued approach. The existence of solution to quantum stochastic differential in-
clusion established has application to quantum stochastic Ricatti inclusion of quantum
stochastic control theory in [4].

2 Preliminaries
In this section we shall state definitions and some preliminary results on quantum sto-

chastic calculus (QSC) and differential inclusions which will be employed in subsequent
sections.
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2.1 Notations and Definitions

Let R be complex separable Hilbert space called initial Hilbert space. This space
describes events and observables concerning a system. In the sequel, we let R =
(—00,+00) and Ry = [0, +00). Let H = L?*(R, C), the symmetric (boson) Fock space
describing events and observables concerning a noise process is I'(H) (later denoted
by T'). A natural dense subset of I consists of linear space generated by the set of
exponential vectors in I' of the form

V() =P QR f feH

n=0

where ®O f=1and ®" f is the n-fold tensor product of f with itself for n > 1. For
f,g9 € H, the relation is defined with respect to the inner products

W’(f)ﬂ/)(g»l“ = exp <f7 g>H7

which is assumed to be antilinear in the first component and linear in the second
component.

Events and observables concerning a system plus noise was described by R @ I
Let D be a linear dense subspace of R and E a linear space generated by the set of
exponential vectors dense in I'. The linear span of a linearly independent set {c®(f) :
ceD,fe H}isdensein R®T, where ® denotes algebraic tensor product. The inner
product and norm induced by R @ I" are respectively represented by (.,.) and ||| .

We shall introduce the notions of time and adaptedness as defined in the literatures.
Let £ be a spectral measure on (R4, 3) (where g is the o-algebra of Borel measurable
subsets of [0,400) whose values are projection operators on H such that {(Ry) = Id,
the identity operator on H. Time is defined as a R -valued observable £ with no jump
points i.e. £({t}) = 0 for every ¢ > 0.

Let I = [0, +00), a stochastic process indexed by I is an R®@I-valued map, X : I —
R®T. Let D C R and A C H be linear manifolds such that for all 0 < s < t < +00,
E([s,t])f € A whenever f € A. Also, let Dy and Ey be the linear spans of D and
I'(A) respectively, then the linear span of D ® I'(A) is Dy®Eq. For each t > 0, let Hy
denotes the range of £([0,t]); f and f}; respectively denote £([0,]) f and &([t, +00))f,
the notion of adaptedness is defined as follows:

A family X = {X(¢) : t € I} of operators from R QT to R®TI is called an adapted
stochastic process with respect to the triple (£, D, A) if for allt € I, c € D and f € A,

(i) dom(X(t)) D DoEo,
(ii) X(t)c@d(fy) € RT(Hy),
(iil) X(O)e@y(f) = (X#)e@P(fy) @ V(fir)-

An adapted stochastic process X is said to be continuous if for every ¢ € D and f € A
the map ¢ € [0,00) — X (t)c ® ¥(f) is continuous. Let n = c R ¥(f) € R® T, an
adapted stochastic process X is said to be bounded if

I X @&)n| = <X(t)777X(t)17>% <ooforeveryceD, feAandtel.
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Let B(R ®T') be the space of bounded adapted stochastic processes on R ® I'. The
norm || . ||’ is defined on B(R ® I') as follows

IX|I" = sup{[|X (&)nl| : n € R@T, t € I}.

B(R ®T') with the norm || . ||’ is a Banach space which will be denoted in the sequel
by B. Let Cl(B)(resp. Comp(B)) denote the family of all nonempty closed bounded
(resp. compact) subsets of B. For X € B, M, N € CI(B), define

p(M,N) = max(6(M,N), (N, M)),

where

5(M7N)E)?1€1J[24d(X,J\/') and d(X,N)EYifelva||X_Y||~

Moreover, if M € CU(B), then M|z, is defined by

Ml a5y = p(M, {0}).

The function p: Cl(B)x Cl(B)— Ry is a metric on C1(B) called the Hausdorff metric
in CI(B). The Hausdorff topology induced by the metric is derived as follows:
Given € > 0 and A € Cl(B), we define an open neighbourhood U (A, €) as

U(Ae) = {X € A:d(X, A) < e}

For every M, N € C1(B), the Hausdorff topology, Ty is derived from Hausdorff metric
p as

p(MyN) =inf{e >0: M CUWN,¢) and N C U(M,e)}.

THEOREM 1. The metric space (Cl(B), p) is complete.

PROOF. We shall prove that for any Cauchy sequence (A,) of C1(B), A, converges
to A where

0o oo
A= U An#0.
n=1m=n
For any € > 0 and each k € N there exists Ny, such that n,m > Ny implies p(A,, An,) <
27%¢. Let (ny) be a strictly increasing sequence of N such that ng > Ni. Let zg, 21, o, ..., T,
be chosen such that

T € Ap,, || Tig1 —xi [|[< 27 %, fori=1,2,...,k— 1.

Now, since d(zg, An, ;) < p(An,s Anyyy) < 2-(*+D¢  we can choose Tj4; in Aniir
which satisfies || zpy1 — 25 ||< 27+ De. Therefore () is a Cauchy sequence of B,
since B is complete, there is z € B such that ||z — || — 0 as k — co. We have z € A
and ||z — zo|| < 2e. Then for every ng > Ny and zp € A, there exists a point z € A
such that ||z — zo|| < 2e. Hence §(A,,, A) < 2¢e for ng > Ny. Let N € N be such that
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m,n > N implies that p(A,, An,) < e Let z € A, then z € |J,_, A, and there exists
ng > N, y € Ay, such that || z — y || < e. For each m > N, we have

d(z, An) < d(z, Ap,) +6(Apg, A) < 2e.

Hence §(A, A,,) < 2¢, which implies that §(A,.A,,) — 0 as n — oco. This together with
5(An, A) — 0 as n — oo from above imply that p(A,, A) — 0 as n — oo, hence the
proof.

In the sequel, we shall denote the topological space (Cl(B), 7 ) by Cl(B) and the
set of all adapted stochastic processes on B shall be denoted by Ad(B).

2.2 Quantum Stochastic Integral
DEFINITION. A member X of Ad(B) is called

(i) absolutely continuous if the map ¢ — || X (¢)||, t € I is absolutely continuous.
(ii) locally absolutely p-integrable if || X(.)||” is Lebesgue -measurable and integrable
on [0,t) C I for each t € I . We denote by Ad(B),. (resp.L] .(B)) the set of all

absolutely continuous(resp. locally absolutely p-integrable) members of Ad(B).

Stochastic integrators

Let L5 (Ry,C) [resp.LE),.(Ry)] be the linear space of all measurable, locally
bounded functions from R to C [resp. to B ].

For f,g € H and 7 € L%‘leC(RJF), the annihilation, creation and gauge operators

are respectively linear operators a(f), a¥(f), A(w) : T — T defined as:

a(Hlg) = (fr9)u(9),

() = ablg+of) lomo

d

Am)lg) = (e f) oo

They give rise to the operator-valued maps Ay, A}' and A, defined by

Aft) = a(fX[O,t))a
A}r (t) = aF (fX[o,t))7
Aﬂ' t) = )‘(TFX[O,t))v

for t € R4, where x; denotes the indicator function of the Borel set I C R;. The
maps Ay, A}“ and A, are stochastic processes , called annihilation, creation and gauge
processes , respectively, when their values are identified with their ampliations on RRQT".
These are the stochastic integrators in Hudson and Parthasarathy[10] formulation of
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2
loc

boson quantum stochastic integration. For processes p,q,u,v € L7 (B), the quantum

stochastic integral:

/ (p(s)dA=(s) +q(s)dAy(s) + u(s)dA;r(s) +v(s)ds), to,t € Ry,

to

is interpreted in the sense of Hudson-Parthasarathy[10].

DEFINTION.

(a) By a multivalued stochastic process indexed by I C R} we mean a multifunction
on I with values in Cl(B); that is, ® : I — 25, such that ®(t) € CI(B).

(b) If ® is a multivalued stochastic process indexed by I C R, then a selection of ®
is a stochastic process X : I — B with the property that X (t) € ®(¢) for almost
allt € 1.

(¢) A multivalued stochastic process ® will be called (i) measurable if t — d(z, ®(t))
is measurable for arbitrary € B. (ii) locally absolutely p-integrable if ¢ ||
O(t) |las, t € Ry lie in Lf (I). For p € (0,00) and I C Ry, the set of all
locally absolutely p-integrable multivalued stochastic processes will be denoted
by L? (B)muvs- Moreover, if ® € LY _(B)mys, then we denote by

loc loc

L,(®)={¢ € LP(B) : ¢ is a selection of ®}.

Let f,g € H, m € L§),.(R+),and let the identity map on R @ I' be denoted by I, if
N is any of the stochastic processes Ay, A;‘, Ay and s — sl, s € Ry. We introduce the

Aumann quantum stochastic integral as follows: If ® € L? (B).yps, then

/ " B(s)dN(s) = { KN ()56 € La() |

to

where ftto #(s)dN(s) : HR®T — H®7T is a linear operator defined on the linear span
{c@Y(f):ceD,fe A} with matrix elements

{c@ (), t ¢(s)dN (s)d @ ¢(g)).

This leads to the following definition of quantum stochastic integral inclusion in the
sense of Aumann: Let E,F,G,H € L? (B)mys with selections p,q,u,v € L% (B)

loc loc

respectively. For f,g € L° (R}) and 7 € L 1oc(R4), let the integral

M@) = / (E(s)dAx(s) + F(s)dAy(s)

to

+G(s)dA} (s) + H(s)ds), a.etel,
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then

/ (p(5)dAr(3) + a()dAf (5) + u()dAT (5) + v(s)ds)

to

M) = {
:p(s) € E(s),q(s) € F(s),u(s) € G(s),v(s) € H(s)}

Therefore for a fixed z(tg) = xo, we have the quantum stochastic integral inclusion

o(t) € o+ / (E(s)dAx(s) + F(s)dAs(s)

to

+G(s)dA] (s) + H(s)ds), a.etel.

Let N C B, a multivalued map ® : I x A" — 25 will be said to be upper semicontinuous
at a point (to,zo) € I X NV, if every € > 0 , there exists § = d((to, o), €) > 0 such that

CI)(If,{E) c ‘I)(tmffo) + €B,

where B is a unit ball centred at the origin. @ is said to be upper semicontinuous on
I x N if it is upper semicontinuous at every point (t,z) € I x N.

3 Existence Results

In this subsection we prove an existence theorem for upper semicontinuous quantum
stochastic differential inclusions.
The following proposition follows from Theorem 4.1 in [10].

PROPOSITION 1. Let E, F,G, H € L? (I XB).s with selections p, g, u,v € L*(B)
respectively. For arbitrary n,¢ € DQE with n = c®e(a), £ = d®e(B), a, 8 € L7 (R}),
fag € Ly, (R+), e LOBS(»)/)JOC(R-F)a then

loc

(n, M(t)€) = {(77,/ (P(s)dAx(s) + q(s)dAs(s) +u(s)dAg () + v(s)ds)€)

to

:p(s) € E(s,2(5)),q(s) € F(s,x(s)),u(s) € G(s,z(s)),v(s) € H(&x(s))}

The proposition therefore gives the definition for the matrix form of the Aumann
integral for multifunction, that is, for each t € I; M(t) : H® T — 2"®T. We denote by
A(H ®T), the set of matrix form Aumann integral maps on H ® I". We can define a
metric d on A(H ®T') as follows: for each t € I, n,§ € HQT, let Uy (¢t) = (n, M;1()€)
and Uy (t) = (n, M2(t)€) € A(H ®T') such that

My(t) = /(El(s,l’(S))dAﬂ(S)+F1(87x(8))dAf(8)

to

+G1(s,x(s))dAS (s) + Hi(s,2(s))ds)



174 The Existence of Solutions

and

My(t) = / (Ea(s,2(5))dAn (5) + Fa(s, 2(s))dA; (s)

to

+Ga(s,x(s))dA} (s) + Ha(s, z(s))ds)

for some E;, F;,Gi, H; € L} (I X B)yys with selections p;, ¢;, ui,v; € L (B) respec-
tively, 1 = 1, 2,
¢
d(W1(t), ¥2(t)) = [ max{p(Er, E2), p(F1, F2)p(G1, G2)p(H1, Ha)}ds.

to

We remark that (A(H®T),d) is a complete metric space. We shall prove the existence
of solutions to a quantum stochastic integral inclusions in form of matrix elements.

LEMMAL. Suppose A is a closed convex set in cl(B) then

(. / " Ads)E) = (. (t2 — t1)AE).

PROOF. For arbitrary n,§ € H® T,

Now let z € (n, ( :12 Ads)¢), this implies that z = (n, ( :12 p(s)ds)€) where p(.) is mea-
surable with values in A. By Mean value Theorem, z = (n, (t2 — t1)p), p € co{p(s) :
t1 < s <t} which implies that z € (n, (t2 — ¢1)AE). Hence this lemma holds.

THEOREM 2. Let E,F,G,H € L} (I X B)y,s be upper semicontinuous multi-
valued stochastic processes from I x B into the compact convex subsets of B. Then

z(.) € Ad(B) is a solution on I to the differential inclusion

(n, ' (1)€) € (n, M"(£)§) (1)

if and only if
(0, (2(t2) — x(£1))€) € (n, M(t)S). (2)
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PROOF. When z(.) € Ad(B) is a solution to (1) on I, its derivative is a measurable
selection of

(E(s,z(s))dAr(s) + F(s,z(s))dAs(s) + G(s, x(s))dAS (s) + H(s,z(s))ds).

Hence,
<77a (m(t2) - x(tl))£> € <777 M(t)€>

Conversely, assume that (2) holds and let | ®|| = 4®™ where ™ = max{||E||, | F||, |G|, | H||}
Then

|l (t2) —m(t1)||7 < /t2 H(E(S,x(s))dAﬂ(s) + F(s,x(s))dAf(s)

+G(s, (s))dAS (s) + H(s,x(s))ds)

IA

OEMWFHWG+WHOMr%ﬂ
1P| |t2 — t1] -

IN

This implies that x(.) is Lipschitzian and hence differentiable a.e. ¢ € I. Let ¢’ be a
point where 2'(t) exists. Since E, F,G, H are upper semicontinuous, fix ¢ > 0, let B
be a unit ball in B and let § > 0 be such that |t — /| < § implies

Fwww»+Fwww»+Gwaw»+wawﬂ
C [E(t, x(t)) + F(t,z(t)) + G(t, z(t)) + H(t, z(t)) + EB] .

Then

(0, (x(t1) —=(£))§) € (n, M(t)E)

C (i M@)E) + (nep§) (p € B)

= (0, (L =)M'()€) + (n, ep),

which implies that (n,z'(t)&) € (n, M'(t)€) + (n, ep§). Since € is arbitrarily chosen and
E,F,G, H closed, we see that

(n, 2’ (£)€) € (n, M'(£)§)-

3.1 Application to Quantum Stochastic Control

Consider the quantum stochastic Ricatti differential inclusion

+ (P()U(t) + (1) P(1))dAs (1) + (P(H)D(2) + W™ (1) P())dAg (1),  (3)

dP(t) € (P()Q(t) + (1) P(£) + &*(£)P(£)B(t) — P2(t) + Q(t))dt
{ P(0) = Py
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Where Q(t), ®(t), U(t),Q(t) € L .(B)mos, t € [0,T], and Q*, ®*, U*, Q* € L2 (B)mos

loc loc
are their adjoints respectively. The matrix elements integral equivalent of (3.3) is

(n, P(t)§)
T
€ (n,Rg) + (n, [/t (P(s)9(s) + Q" (s) P(s) + " (s)P(s)®(s) — P*(s) + Q(s))ds
+H(P(5)¥(s) + ©7(5)P(s))dAs (s) + (P(s)®(s) + U™ (5)P(s))dA] (s)]€)- (4)

Suppose Q(t, P), ®(¢, P), ¥(t, P) and their adjoints are upper semicontinuous on I x B
and Q(t) is upper semicontinuous on B. Let Q(t, P) = P(t)$(¢t), ®(t, P) = P(t)®(t)
and ¥(t, P) = P(t)¥(t) where Q(t), ®(t), ¥(t) and their adjoints are upper semicon-
tinuous on B, such that Q(t, P)* = Q(¢)*P(¢)*, ®(¢, P)* = ®(t)*P(t)* and ¥(¢, P)* =
U(t)*P(t)*.

The following result is a corollary to Theorem 1 above and establishes the existence
of solution to (3) or (4).

COROLLARY 1. Assume that the maps Q, &, ¥ € leoc(I X B)mys and P,Q €

L} .(B) with compact convex values such that

(a) t— Q(t, P(t)), t — ®(t, P(t)), t — W(¢, P(t)) have measurable selections,

(b) P +— Q(t, P(t)),P — ®(t,P(t)),P — (¢, P(t)) and their adjoints are upper
semicontinuous.

(c¢) For any ty,t2 € [0,T7,
(n, (P(t2) — P(t1))¢)
€ [/ (P(5)(s) + Q" (s) P(s) + @*(s) P(s)®(s) — P*(s) + Q(s))ds

t1

+H(P(s)¥(s) + ©7(s)P(s))dAs(s) + (P(s)®(s) + U™ (5) P(s))dA] (s)]€)-

Then the quantum stochastic Ricatti differential inclusion (3) has a solution on
[0,T7.

PROOF. Suppose w, ¢, 1 are measurable selections of €2, &, ¥ respectively, then
(c) implies that

(n, (P(t2) — P(t1))€)
= [/;2 (P(s)w(s) +w(s)P(s) + &"(s)P(s)¢(s) — P*(s) + Q(s))ds
+(P(Sl)w(5) +¢"(s)P(s))dAy (s) + (P(s)2(s) +¥"(s) P(s))dAg ()]€)-
From Theorem 1, there exists K > 0 such that

(0, (P(t2) — P(t1))§)] < K[tz —ta].
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That is, P is Lipschitzian. Also, w, ¢, 1 are bounded from the upper semicontinuity
of Q, ®, W. Therefore the quantum stochastic integral equation arising from (4) by
using the measurable selection is a form of matrix element equivalence of noisy Ricatti
differential equation in [4]. The existence of solution then follows as established in
Lemma 2.1 in [4]. Since these measurable selections are not unique, then the solution
to (3) is a set.

Suppose the solution set is the set of stochastic processes P(t) = {P(t) : t € [0,T]}
and let

T
Jer(u) = / [(X (D)€, R*RX(8)E) + (u(t)E, u(t)e)] i
HX(T)E P(T)X(T)E) €€HoT, (5)

be the quadratic performance functional corresponding to quantum stochastic control
problem

dX(t) = ()X (t) 4+ u(t))dt + W (t) X (t)dAs (t) + @) X (t)dAS (1) X(0) = 1.

Where u(t) is a continuous selection from the space of admissible controls U (¢) = {u(t) :
t € 10,7} and R is a bounded operator on the system space H.
Then the quadratic performance functional (5) is minimized by the feedback control
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