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Abstract

The fractional order nonlinear neutral differential equation

cDα
0+ (x (t)− g (t, x (t− τ (t)))) = f (x (t) , x (t− τ (t))) , t ∈ [0, T ] ,

is considered in this work. By using Krasnoselskii’s fixed point theorem and the
contraction mapping principle, we establish some criteria for the existence and
uniqueness of solutions to the fractional order neutral differential equation.

1 Introduction

During the last years, the use of fractional derivative has an important increase in
many fields of science and engineering. In fact as the classical differential calculation
provided powerful instruments for the explanation and modelization of a huge number
of phenomena studied by applied mathematics, these instruments do not allow us to
recognize the abnormal dynamics presented by some complex systems faced in nature
or within social interactions, such as the diffusion of contamination in underground
water, the relaxation of viscoelastic materials like the polymairies, the pollution pro-
paganda in the atmosphere. The diffusion of cells procedures, the signal transmission
by magnetic fields, the network traffi c, speculation effect on the store benefits in the
financial markets, etc. [9, 11, 18].
In most of these cases, this kind of abnormal process has a complex microscopic and

macroscopic behavior where the dynamic can’t be characterized by the models based
on the classical derivatives. It is proved by using the well known experimental results
where many processes related to complex systems have a non-local dynamic leading
to long term effects "long-memory" (or differentiated behavior). The operators of the
fractional derivative and integration present similitude with certain characteristics that
are more meaningful and adaptable to phenomena modeling.
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The concept of fractional derivatives or derivatives of fractional order is not recent.
In 1695, Leibniz gave a signification to the derivative of order 1/2. Later on a lot
of mathematicians (Liouville, Riemann, Weyl, Fourier, Abel, Lacroix, Grunwald, and
Letnikov) have contributed in the evolution of the fractional calculus theory which is
a generalization of differential and integral calculus to a real or complex non-integer
order. For more details, on related historic aspects we refer to [10, 12, 14, 15, 16, 17].
The fractional derivative generalizes the ordinary derivative notion within a certain

measure. Hence this definition is not available except on a conceptual plan. To talk
about generalization, a lot of progress should be done to establish the link between the
two theories so that the ordinary derivatives can be interpreted as a sub-set of fractional
derivatives. In fact, different approaches have been developed until now without being
equivalent. This gives these derivatives power and limitation at the same time. We
conclude that, the fractional derivative is a way of synthetics to describe intermediate
behaviors between the classical derivatives which have a remarkable property to itself
a non-local characteristic: the fractional derivatives contain some information on the
function to interior points. So, they possess a memory effect that describe the past of
the function [1, 2, 7, 19, 21].
In other words, the theory of fractional calculus provides many meanings potentially

necessary for the resolution of the integral equations, differential and other problems
using special functions in mathematical physics. In particular, the fractional differential
equations like the important branch of fractional calculus researches keep a lot of
attention. Theories on the local existence and uniqueness of the dependency in relation
with the solution data of the fractional specific equations have been exploited during
the recent years (see [5, 6]).
In mathematics delay differential equations are a type of differential equation in

which the derivative of unknown function at a certain time is given in terms of the
values of the function at previous times.
While physical events such as acceleration and deceleration take little time com-

pared to the time needed to travel most distances. Time involved in biological processes
such as gestation and maturation can be substantial when compared to the data-
collection time in most population studies. Therefore, it is often imperative to explicitly
incorporate these processes times into mathematical models of population dynamics.
These process times are often called delay times and the models that incorporate such
delay times are referred as delay differential equation models. [3, 4, 8, 13, 20].
In this article we study the existence of solutions of the fractional order nonlinear

neutral differential equation with variable delay

cDα
0+ (x (t)− g (t, x (t− τ (t)))) = f (x (t) , x (t− τ (t))) , t ∈ [0, T ] , (1)

with the initial condition
x (t) = ψ (t) , t ∈ [m0, 0] ,

where cDα
0+ is the standard Caputo fractional derivative of order α ∈ (0, 1), m0 =

inft∈[0,T ] {t− τ (t)}, τ : R+ → R+ and ψ : [m0, 0] → R are continuous functions. The
functions g (t, x) and f (x, y) are Lipschitz continuous in x and in x and y, respectively.
That is, there are positive constants L1, L2, L3 such that

|g(t, x)− g(t, y)| ≤ L1 |x− y| , (2)
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and
|f (x, y)− f (w, z)| ≤ L2 |x− w|+ L3 |y − z| . (3)

To reach our desired end we have to transform (1) into an integral equation and then
use Krasnoselskii’s fixed point theorem to show the existence of solutions. The obtained
integral equation splits in the sum of two mappings, one is a contraction and the other
is compact.
The organization of this paper is as follows. In Section 2, we introduce some defini-

tions and lemmas, and state some preliminary results needed in later sections. Also, we
present the inversion of (1) and state Krasnoselskii’s fixed point theorem. For details
on Krasnoselskii’s theorem we refer the reader to [22]. In Section 3, we present our
main results on existence of solutions of (1).

2 Preliminaries

In this section, we introduce notations, definitions and preliminary facts which are used
throughout this paper.

DEFINITION 2.1. The fractional integral of order α > 0 of a function x : R+ −→ R
of order α ∈ R+ is defined by

Iα0 x (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 x (s) ds,

provided the right side exists pointwise on R+, where Γ is the gamma function.

For instance, Iαx exists for all α > 0, when x ∈ C (R+) then Iαx ∈ C (R+) and
moreover Iαx (0) = 0.

DEFINITION 2.2. The Caputo fractional derivative of order α > 0 of a function
x : R+ −→ R is given by

cDα
0+x (t) =

1

Γ (n− α)

∫ t

0

(t− s)n−α−1 x(n) (s) ds = In−α0+ x(n) (t) ,

where n = [α] + 1, provided the right side is pointwise defined on R+.

LEMMA 2.1. Suppose that x ∈ Cn−1 ([0,∞)) and x(n) exists almost everywhere
on any bounded interval of R+. Then

(Iα0+
cDα

0+x) (t) = x (t)−
n−1∑
k=0

x(k) (0)

k!
tk.

In particular, when α ∈ (0, 1),
(
Iα0+

cDα
0+x

)
(t) = x (t)− x (0).

From Lemma 2.1, we deduce the following lemma.
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LEMMA 2.2. Suppose that (3) holds. Let x ∈ C ([m0, T ]), x′ and ∂g
∂t exist. Then

x is a solution of (1) if and only if

x (t) = ψ (0)− g (0, ψ (−τ (0))) + g (t, x (t− τ (t)))

+
1

Γ (α)

∫ t

0

(t− s)α−1 f (x (s) , x (s− τ (s))) ds, (4)

for t ∈ [0, T ] and x (t) = ψ (t) for t ∈ [m0, 0].

Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables
us to prove the existence of solutions to (1). For its proof we refer the reader to [22].

THEOREM 2.1 (Krasnoselskii). Let B be a nonempty closed convex subset of a
Banach space (X, ‖.‖). Suppose that F1 and F2 map B into X such that

(i) for any x, y ∈ B, F1x+ F2y ∈ B,

(ii) F1 is a contraction, and

(iii) F2 is continuous and F2 (B) is contained in a compact set.

Then there exists z ∈ B such that z = F1z + F2z.

3 Main Results

To apply Theorem 2.1, we need to define a Banach space X and a closed convex subset
D of X, and to construct two mappings, one is a contraction and the other is compact.
So, we let (X, ‖.‖) = (BC ([m0, T ] ,R) , ‖.‖) and D = {x ∈ BC ([m0, T ] ,R) : ‖x‖ ≤ r},
where BC ([m0, T ] ,R) denotes the collection of all bounded and continuous functions
from [m0, T ] to R and r is positive constant. We express equation (4) as

x (t) = (F1x) (t) + (F2x) (t) = (Fx) (t) , (5)

where F1, F2 : D → X are defined by

(F1x) (t) = ψ (0)− g (0, ψ (−τ (0))) + g (t, x (t− τ (t))) (6)

and

(F2x) (t) =
1

Γ (α)

∫ t

0

(t− s)α−1 f (x (s) , x (s− τ (s))) ds. (7)

LEMMA 3.1. Suppose that (2) holds. If F1 is given by (6) with

L1 < 1, (8)

then F1 : D → X is a contraction.
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PROOF. Let F1 be defined by (6). Obviously, F1x is bounded and continuous. So,
for x, y ∈ D, we have

|(F1x) (t)− (F1y) (t)| = |g (t, x (t− τ (t)))− g (t, y (t− τ (t)))|
≤ L1 |x (t)− y (t)| ≤ L1 ‖x− y‖ .

Then

‖F1x− F1y‖ ≤ L1 ‖x− y‖ .

Thus F1 : D → X is a contraction by (8).

LEMMA 3.2. Suppose that (3) holds. Then F2 : D → X, as defined by (7), is
compact.

PROOF. Let F2 be defined by (7). Clearly, F2x is bounded and continuous. To
prove the continuity of F2, we consider a sequence xn converging to x. Taking the
norm of (F2xn) (t)− (F2x) (t), we have

|(F2xn) (t)− (F2x) (t)|

≤ 1

Γ (α)

∫ t

0

(t− s)α−1 |f (xn (s) , xn (s− τ (s)))− f (x (s) , x (s− τ (s)))| ds

≤ 1

Γ (α)

∫ t

0

(t− s)α−1 (L2 |xn (s)− x (s)|+ L3 |xn (s− τ (s))− x (s− τ (s))|) ds

≤ L2 + L3
Γ (α)

∫ t

0

(t− s)α−1 ds ‖xn − x‖ ≤
L2 + L3
Γ (α+ 1)

Tα ‖xn − x‖ .

From the above analysis we obtain

‖F2xn − F2x‖ ≤
L2 + L3
Γ (α+ 1)

Tα ‖xn − x‖ ,

and hence whenever xn −→ x, F2xn −→ F2x. This proves the continuity of F2.

To show F2 is compact. Observe that in view of (3) we arrive at

|f (x (t) , y (t))| = |f (x (t) , y (t))− f (0, 0) + f (0, 0)|
≤ |f (x (t) , y (t))− f (0, 0)|+ |f (0, 0)|
≤ L2 ‖x‖+ L3 ‖y‖+ δf ,
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where δf = |f (0, 0)|. Now for t1 ≤ t2 ≤ T , we have

|(F2x) (t2)− (F2x) (t1)|

≤ 1

Γ (α)

∣∣∣∣∫ t2

0

(t2 − s)α−1 f (x (s) , x (s− τ (s))) ds

−
∫ t1

0

(t1 − s)α−1 f (x (s) , x (s− τ (s))) ds

∣∣∣∣
≤ 1

Γ (α)

∣∣∣∣∫ t1

0

(t2 − s)α−1 f (x (s) , x (s− τ (s))) ds

+

∫ t2

t1

(t2 − s)α−1 f (x (s) , x (s− τ (s))) ds

−
∫ t1

0

(t1 − s)α−1 f (x (s) , x (s− τ (s))) ds

∣∣∣∣
≤ 1

Γ (α)

∫ t1

0

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ |f (x (s) , x (s− τ (s)))| ds

+
1

Γ (α)

∫ t2

t1

∣∣∣(t2 − s)α−1∣∣∣ |f (x (s) , x (s− τ (s)))| ds,

and then

|(F2x) (t2)− (F2x) (t1)|

≤ (L2 + L3) r + δf
Γ (α)

∫ t1

0

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ ds

+
(L2 + L3) r + δf

Γ (α)

∫ t2

t1

∣∣∣(t2 − s)α−1∣∣∣ ds
≤ (L2 + L3) r + δf

Γ (α+ 1)
|−2 (t2 − t1)α + tα2 − tα1 |

≤ 2
(L2 + L3) r + δf

Γ (α+ 1)
(t2 − t1)α .

The right-hand side of above expression does not depends on x. Thus we conclude that
F2(D) is relatively compact and hence F2 is compact by Arzela-Ascoli theorem.

THEOREM 3.1. Let δg = maxt∈[0,T ] {|g (t, 0)|} and δf = |f (0, 0)|. Suppose (2),
(3) and (8) hold. Suppose there is a positive constant r such that all solutions x ∈
BC ([m0, T ] ,R) of (1) satisfy ‖x‖ ≤ r and the inequality

|ψ (0)− g (0, ψ (−τ (0)))|+ L1r + δg +
(L2 + L3) r + δf

Γ (α+ 1)
Tα ≤ r

holds. Then equation (1) has a solution in D = {x ∈ BC ([m0, T ] ,R) : ‖x‖ ≤ r}.

PROOF. By Lemma 3.1, the operator F1 : D → X is a contraction. Also, from
Lemma 3.2, the operator F2 : D → X is compact and continuous. Moreover, if x, y ∈ D,
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we see that

|(F1x) (t) + (F2y) (t)|
≤ |ψ (0)− g (0, ψ (−τ (0)))|+ |g (t, x (t))|

+
1

Γ (α)

∫ t

0

(t− s)α−1 |f (y (s) , y (s− τ (s)))| ds

≤ |ψ (0)− g (0, ψ (−τ (0)))|+ L1 ‖x‖+ δg

+
(L2 + L3) ‖y‖+ δf

Γ (α)

∫ t

0

(t− s)α−1 ds

≤ |ψ (0)− g (0, ψ (−τ (0)))|+ L1r + δg +
(L2 + L3) r + δf

Γ (α+ 1)
Tα

≤ r.

Clearly, all the hypotheses of the Krasnoselskii theorem are satisfied. Thus there exists
a fixed point x ∈ D such that x = F1x + F2x. By Lemma 2.2 this fixed point is a
solution of (1) and the proof is complete.

THEOREM 3.2. Suppose that (2) and (3) hold. If

L1 +
L2 + L3
Γ (α+ 1)

Tα < 1,

then equation (1) has a unique solution.

PROOF. Let the mapping F be given by (5). For x, y ∈ BC ([m0, T ] ,R), in view
of (4), we have

|(Fx) (t)− (Fy) (t)|

≤ L1 ‖x− y‖+
(L2 + L3) ‖x− y‖

Γ (α+ 1)

∫ t

0

(t− s)α−1 ds

≤
(
L1 +

L2 + L3
Γ (α+ 1)

Tα
)
‖x− y‖ .

Then

‖Fx− Fy‖ ≤
(
L1 +

L2 + L3
Γ (α+ 1)

Tα
)
‖x− y‖ .

This completes the proof by invoking the contraction mapping principle.
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