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Abstract

In this paper, we investigate the existence of solutions for nonlinear delay
Caputo q—fractional difference equations. The main result is proved by means of
Krasnoselskii’s fixed point theorem. As an application, we link the conclusion of
the main theorem to an existence result for Lotka—Volterra model.

1 Introduction

The theory of q-calculus, on one hand, which is dated back to the late of nineties
deals with continuous functions which do not need to be smooth. Despite the early
exploration, its investigation was lagged to the beginning of the twentieth century
when discussed in Jackson’s paper [1]. Following the discovery of its demonstrated
applications in the fields of combinatorics and fluid mechanics, Al Salam re-introduced
this theory in his paper [2] and then it has continued to develop until these days [3-12].
The theory of fractional calculus, on the other hand, generalizes integer-order analysis
by considering derivatives of non-integer order [13, 14]. Notable contributions have
been made to both theory and application of fractional calculus during the last years
when some rather special properties of derivatives of arbitrary order were examined
for arbitrary functions. Applications including problems in rheology, electrochemistry,
physics and engineering are amongst those which can be described using equations of
fractional order; the reader is invited to see the paper [15] for more topics considered
as an applications of fractional calculus.
The natural extension, which we investigate here, is to consider a q-fractional calcu-

lus which unifies these two theories by considering q-derivatives of non-integer order. In
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the recent years, there have appeared many results dealing with the qualitative prop-
erties of solutions of q-fractional equations; for instance one can consult [16-23]. In the
analysis of differential equations, particularly, the determination of whether there is a
solution or not is one of the main concepts that must be taken into consideration before
proceeding to the investigations of other properties of solutions. The existence of so-
lutions for q-fractional equations involving boundary conditions has been the object of
many researchers who carried out the investigations under different conditions and by
using various methods [24-29]. Less contributions, never the less, have been conducted
for q-fractional equations with initial conditions [30]. The Lotka-Volterra model has
been extensively investigated through different approaches [33, 34, 35]. However, all
the above mentioned papers studied the integer order Lotka-Volterra model. Despite
its significance, there are few papers studied the fractional order Lotka-Volterra model
[36, 37]. As far as we know, however, there is no literature achieved in the direction of
q-fractional Lotka-Volterra model.
For 0 < q < 1, we define the time scale Tq = {qn : n ∈ Z}∪{0}, where Z is the set of

integers. For a = qn0 and n0 ∈ Z, we denote Ta = [a,∞)q = {q−ia : i = 0, 1, 2, . . .}. Let
Rm be the m-dimensional Euclidean space and define Iτ = {τa, q−1τa, q−2τa, . . . , a},
N0 = {0, 1, 2, 3, . . .} and Tτa = [τa,∞)q = {τa, q−1τa, q−2τa, . . .} where τ = qd ∈
Tq, d ∈ N0 and Iτ = {a} with d = 0 is the non-delay case .
The objective of this paper is to study the existence of solutions for equations of

the form {
qC

α
a x(t) = f(t, x(t), x(τt)) t ∈ Ta,

x(t) = φ(t) t ∈ Iτ ,
(1)

where f : Ta×R×R→ R, φ : Iτ → R and qC
α
a denotes the Caputo’s q-fractional differ-

ence operator of order α ∈ (0, 1). To prove our main results, we employ Krasnoselskii
fixed point theorem and Arzela-Ascoli’s theorem. As an application, we link the con-
clusion of the main result to an existence result for q-fractional Lotka-Volterra model.
To the best of authors’realization, no published paper exists regarding the existence
of solutions of initial value q-fractional problem and its applications to q-fractional
Lotka-Volterra model.

2 Preliminaries

In this section, we set forth some basic nabla notations, definitions and lemmas that
will be used in the sequel. However, before proceeding we state the following two
theorems that play an important role in the proof of the main theorem.

THEOREM 1 ([31] Arzela-Ascoli’s Theorem). A bounded, uniformly Cauchy subset
D of l∞(Ta) (all bounded real-valued sequences with domain Ta) is relatively compact.

THEOREM 2 ([32] Krasnoselskii’s Fixed Point Theorem). Let D be a nonempty,
closed, convex and bounded subset of a Banach space (X, ‖x‖). Suppose that A : X →
X and B : D → X are two operators such that

(i) A is a contraction.
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(ii) B is continuous and B(D) resides in a compact subset of X,

(iii) for any x, y ∈ D, Ax+By ∈ D.

Then the operator equation Ax+Bx = x has a solution x ∈ D.

For a function f : Tq → R, its nabla q-derivative of f is written as

∇qf(t) =
f(t)− f(qt)

(1− q)t , t ∈ Tq − {0}. (2)

The nabla q-integral of f has the following form∫ t

0

f(s)∇qs = (1− q)t
∞∑
i=0

qif(tqi). (3)

For a ∈ Tq, however, (3) becomes∫ t

a

f(s)∇qs =

∫ t

0

f(s)∇qs−
∫ a

0

f(s)∇qs.

The definition of the q-factorial function for n ∈ N is given below

(t− s)nq =

n−1∏
i=0

(t− qis). (4)

In case α is a non positive integer, the q-factorial function is defined by

(t− s)αq = tα
∞∏
i=0

1− s
t q
i

1− s
t q
i+α

. (5)

In Lemma 1, we present some properties of q-factorial functions.

LEMMA 1 ([16]). For α, γ, β ∈ R, we have

(i) (t− s)β+γ
q = (t− s)βq (t− qβs)γq .

(ii) (at− as)βq = aβ(t− s)βq .

(iii) The nabla q-derivative of the q-factorial function with respect to t is

∇q(t− s)αq =
1− qα
1− q (t− s)α−1

q .

(iv) The nabla q-derivative of the q-factorial function with respect to s is

∇q(t− s)αq = −1− qα
1− q (t− qs)α−1

q .
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DEFINITION 1. For a function f : Tq → R, the left q-fractional integral q∇−αa of
order α 6= 0,−1,−2, . . . and starting at a = qn0 ∈ Tq, n0 ∈ Z, is defined by

q∇−αa f(t) =
1

Γq(α)

∫ t

a

(t− qs)α−1
q f(s)∇qs

=
1− q
Γq(α)

n0−1∑
i=n

qi(qn − qi+1)α−1
q f(qi), (6)

where

Γq(α+ 1) =
1− qα
1− q Γq(α), Γq(1) = 1, α > 0. (7)

REMARK 1. The left q-fractional integral q∇−αa maps functions defined on Tq to
functions defined on Tq.

DEFINITION 2 ([30]). Let 0 < α /∈ N . Then the Caputo left q-fractional derivative
of order α of a function f defined on Tq is defined by

qC
α
a f(t) , q∇−(n−α)

a ∇nq f(t) =
1

Γq(n− α)

∫ t

a

(t− qs)n−α−1
q ∇nq f(s)∇qs, (8)

where n = [α] + 1. In case α ∈ N, then we may write qCαa f(t) , ∇nq f(t). The (left)

Riemann q-fractional derivative is defined by ( q∇αaf)(t) = (∇q q∇−(n−α)
a f)(t). In

virtue of [30], the Riemann and Caputo q-fractional derivatives are related by

( qC
α
a f)(t) = ( q∇αaf)(t)−

(t− a)−αq
Γq(1− α)

f(a). (9)

LEMMA 2 ([30]). Let α > 0 and f be defined in a suitable domain. Thus

q∇−αa qC
α
a f(t) = f(t)−

n−1∑
k=0

(t− a)kq
Γq(k + 1)

∇kqf(a) (10)

and if 0 < α ≤ 1 we have

q∇−αa qC
α
a f(t) = f(t)− f(a). (11)

The following identity is crucial in solving the linear q-fractional equations

q∇−αa (x− a)µq =
Γq(µ+ 1)

Γq(α+ µ+ 1)
(x− a)µ+α

q , (0 < a < x < b), (12)

where α ∈ R+ and µ ∈ (−1,∞). The q-analogue of Mittag-Leffl er function with double
index (α, β) is introduced in [30]. It was defined as follows.
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DEFINITION 3 ([30]). For z, z0 ∈ C and R(α) > 0, the q-Mittag-Leffl er function
is defined by

qEα,β(λ, z − z0) =

∞∑
k=0

λk
(z − z0)αkq
Γq(αk + β)

. (13)

In case β = 1, we use qEα(λ, z − z0) := qEα,1(λ, z − z0).

EXAMPLE 1 ([30]). Let 0 < α ≤ 1 and consider the left Caputo q-fractional
difference equation

qC
α
a y(t) = λy(t) + f(t), y(a) = a0, t ∈ Tq. (14)

The solution of (14) is given by

y(t) = a0 qEα(λ, t− a) +

∫ t

a

(t− qs)α−1
q qEα,α(λ, t− qαs)f(s)∇qs. (15)

If instead we use the modified q-Mittag-Leffl er function

qeα,β(λ, z − z0) =

∞∑
k=0

λk
(z − z0)

αk+(β−1)
q

Γq(αk + β)
,

then the solution representation (15) becomes

y(t) = a0 qeα(λ, t− a) +

∫ t

a
qeα,α(λ, t− qs)f(s)∇qs.

REMARK 2 ([30]). If we set α = 1, λ = 1, a = 0 and f(t) = 0 in (14), we
reach at a q-exponential formula eq(t) =

∑∞
k=0

tk

Γq(k+1) on the time scale Tq, where
Γq(k+1) = [k]q! = [1]q[2]q . . . [k]q with [r]q = 1−qr

1−q . We recall that eq(t) = Eq((1−q)t),
where Eq(t) denotes a special case of the basic hypergeormetric series, namely,

Eq(t) = 1φ0(0; q, t) =

∞∏
n=0

(1− qnt)−1 =

∞∑
n=0

tn

(q)n
,

where (q)n = (1− q)(1− q2) . . . (1− qn) is the q-Pochhammer symbol.

3 The Main Result

We prove our main result under the following assumptions:

(I) f(t, x(t), y(t)) = f1(t, x(t))+f2(t, x(t), y(t)), where fi are Lipschitz functions with
Lipschitz constants Lfi , i = 1, 2.

(II)
∣∣f1(t, x(t))

∣∣ ≤M1|x(t)| and |f2(t, x(t), y(t))| ≤M2|x(t)|×|y(t)| for some positive
numbers M1 and M2.
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Let B(Tτa,R) = l∞(Tτa) and Tτa = [τa,∞)q denote the set of all bounded func-
tions (sequences) on Tτa. Define the set

D =
{
x : x ∈ B(Tτa,R), |x(t)| ≤ r, for all t ∈ Tτa

}
,

where r satisfies

|φ(a)|+ M1r +M2r
2

Γq(α)
≤ r.

Define the operators F1 and F2 by

F1x(t) = φ(a) +
1

Γq(α)

∫ t

a

(t− qs)α−1
q f1(s, x(s))∇qs,

and

F2x(t) =
1

Γq(α)

∫ t

a

(t− qs)α−1f2(s, x(s), x(s− τ))∇qs.

It is clear that x(t) is a solution of (1) if it is a fixed point of the operator Fx =
F1x+ F2x.

THEOREM 3. Let conditions (I)—(II) hold. Then, equation (1) has a solution in
the set D provided that

Lf1C(α)

Γq(α)
< 1 and |φ(a)|+

(
M1r +M2r

2
)
C(α)

Γq(α)
≤ r.

PROOF. First it is clear that the set D is a nonempty, closed, convex and bounded
set. In light of Theorem 2, we present the proof in three steps.
Step 1: We prove that F1 is contractive. We can easily see that∣∣F1x(t)− F1y(t)

∣∣ =
1

Γq(α)

∫ t

a

(t− qs)α−1
q

∣∣f1(s, x(s))− f1(s, y(s))
∣∣∇qs

≤ Lf1
Γq(α)

∫ t

a

(t− qs)α−1
q |x(s)− y(s)|∇qs

≤ Lf1
Γq(α)

‖x− y‖
∫ t

a

(t− qs)α−1
q ∇qs. (16)

By virtue of (12) and since (t− a)0
q = 1, one can see that

1

Γq(α)

∫ t

a

(t− qs)α−1
q (t− a)0

q∇qs = q∇αa (t− a)0
q =

Γq(1)(t− a)αq
Γ(α+ 1)

.

Therefore, (16) becomes

∣∣F1x(t)− F1y(t)
∣∣ ≤ Lf1C(α)

Γq(α)
‖x− y‖, t < T1,
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where C(α) =
(1−q)(T1−a)αq

1−qα is a positive constant depending on the order α. By the

assumption that Lf1C(α)

Γq(α) < 1, we conclude that F1 is contractive. Furthermore, we
obtain for x ∈ D:∣∣F1x(t) + F2x(t)

∣∣
≤ |φ(a)|+ 1

Γq(α)

∫ t

a

(t− qs)α−1
q

∣∣f1(s, x(s)) + f2(s, x(s), x(τs))
∣∣∇qs

≤ |φ(a)|+ M1‖x‖+M2‖x‖2
Γq(α)

∫ t

a

(t− qs)α−1
q ∇qs

≤ |φ(a)|+
(
M1r +M2r

2
)
C(α)

Γq(α)
≤ r,

which implies that F1x+ F2x ∈ D. For x ∈ D, we also get

|F2x(t)| ≤ 1

Γq(α)

∫ t

a

(t− qs)α−1
q

∣∣f2(s, x(s), x(τs))
∣∣∇qs ≤ (M2r

2
)
C(α)

Γ(α)
≤ r,

which implies that F2(D) ⊂ D.
Step 2: We prove that F2 is continuous. Let a sequence xn converge to x. Taking

the norm of F2xn(t)− F2x(t), we have∣∣F2xn(t)− F2x(t)
∣∣

≤ 1

Γ(α)

∫ t

a

(t− qs)α−1
q

∣∣f2(s, xn(s), xn(τs))− f2(s, x(s), x(τs))
∣∣∇qs

≤ Lf2
Γq(α)

∫ t

a

(t− qs)α−1
q

(
|xn(s)− x(s)|+

∣∣xn(τs))− x(τs)
∣∣)∇qs

≤ 2Lf2
Γq(α)

‖xn − x‖
∫ t

a

(t− qs)α−1
q ∇qs =

(
2Lf2

)
C(α)

Γq(α)
‖xn − x‖.

From the above inequalities, we conclude that whenever xn → x, then F2xn → F2x.
This proves the continuity of F2. To prove that F2(D) resides in a relatively compact
subset of l∞(Tτa), we let t1 ≤ t2 ≤ H to get

∣∣F2x(t2)− F2x(t1)
∣∣ ≤ 1

Γq(α)

∣∣∣ ∫ t2

a

(t2 − qs)α−1
q f2(s, x(s), x(τs))

−
∫ t1

a

(t1 − qs)α−1
q f2(s, x(s), x(τs))

∣∣∣∇qs
≤ 1

Γq(α)

t1∑
a

∣∣∣(t2 − qs)α−1
q − (t1 − qs)α−1

∣∣∣|f2(s, x(s), x(τs))|∇qs

+
1

Γq(α)

∫ t2

t1

∣∣(t2 − qs)α−1
q

∣∣|f2(s, x(s), x(τs))|∇qs.
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Upon employing condition (II), we obtain∣∣F2x(t2)− F2x(t1)
∣∣

≤ M2r
2
[ 1

Γq(α)

∫ t1

a

(t2 − qs)α−1
q ∇qs+

1

Γq(α)

∫ t1

a

(t1 − qs)α−1
q ∇qs

+
1

Γq(α)

∫ t2

t1

(t2 − qs)α−1
q ∇qs

]
.

Hence, we reach to∣∣F2x(t2)− F2x(t1)
∣∣ ≤M2r

2
[
q∇−αa (t2 − a)0

q +q ∇−αa (t1 − a)0
q + q∇−αt1 (t2 − t1)0

q

]
.

From (12), it follows that∣∣F2x(t2)− F2x(t1)
∣∣ ≤ M2r

2

Γq(α+ 1)

[
(t2 − a)αq + (t1 − a)αq + (t2 − t1)αq

]
.

This implies that F2 is bounded and uniformly Cauchy subset of l∞(Tτa). Thus, by
virtue of the Arzela Ascoli’s Theorem, we conclude that F2 is relatively compact.
Step 3: It remains to show that for any x, y ∈ D, we have F1x(t) +F2y(t) ∈ D. If

z(·) = F1x(·) + F2y(·), then we have

|z(t)| ≤ |φ(a)|+ 1

Γq(α)

∫ t

a

(t− qs)α−1
q

∣∣f1(s, x(s)) + f2(s, y(s), y(τs))
∣∣∇qs

≤ |φ(a)|+ M1‖x‖+M2‖y‖2
Γq(α)

∫ t

a

(t− s)α−1
q ∇qs

≤ |φ(a)|+
(
M1r +M2r

2
)
C(α)

Γq(α)
,

which implies that z(t) ∈ D.
By employing the Krasnoselskii Fixed Point Theorem, we conclude that there exists

x ∈ D such that x = Fx = F1x+F2x which is a fixed point of F . Hence, equation (1)
has at least one solution in D.

4 Applications

In this section, we employ Theorem 3 to prove an existence result for the solutions of
Lotka-Volterra model{

qC
α
a x(t) = x(t)(γ(t)− β(t)x(τt)) t ∈ Ta,

x(t) = φ(t) t ∈ Iτ , 0 < α < 1,
(17)

where f(t, x(t), x(τt)) = x(t)
(
γ(t) − β(t)x(τt)

)
in equation (1) and the coeffi cients γ

and β satisfy the boundedness relations

inf
t∈Ta

γ(t) = γ− ≤ γ(t) ≤ γ+ = sup
t∈Ta

γ(t) and inf
t∈Ta

β(t) = β− ≤ β(t) ≤ β+ = sup
t∈Ta

β(t),
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which are medically and biologically feasible. Model (17) represents the interspecific
competition in single species with τ denotes the maturity time period.

Denote

f1(t, x(t)) = x(t)γ(t) and f2(t, x(t), x(τt)) = −β(t)x(t)x(τt).

It follows that the functions f1 and f2 satisfy the conditions

(III) |f1(t, x(t))| ≤ γ+|x(t)|, |f2(t, x(t), x(τt))| ≤ β+|x(t)| × |x(τt)|.

(IV) f i are Lipschitz functions with Lipschitz constants Lfi , i = 1, 2.

The solution of model (17) has the form

x(t) = φ(a) +
1

Γ(α)

∫ t

a

(t− qs)α−1
q x(s)

(
γ(s)− β(s)x(τs)

)
∇qs, t ∈ Ta, (18)

and x(t) = φ(t), t ∈ Iτ . Define a function G by

Gx(t) = G1x(t) +G2x(t),

where

G1x(t) = φ(a) +
1

Γq(α)

∫ t

a

(t− qs)α−1
q x(s)γ(s)∇qs,

and

G2x(t) = − 1

Γq(α)

∫ t

a

(t− qs)α−1
q x(s)β(s)x(s− τ)∇qs.

One can easily employ the same arguments used in the proof of Theorem 3 to complete
the proof of the following theorem for equation (17).

THEOREM 4. Let conditions (III)—(IV) hold. Then, the model (17) has a solution

in the set D provided that Lf1C(α)

Γq(α) < 1 and |φ(a)|+
(
γ+r+β+r2

)
C(α)

Γq(α) ≤ r.

REMARK 3. The above result can be extended to n species competitive Caputo
q-fractional Lotka-Volterra system of the form{

qC
α
a xi(t) = xi(t)(γi(t)−

∑n
j=1 βij(t)xj(τ ijt)) t ∈ Ta, i = 1, 2, ..., n,

xi(t) = φi(t) t ∈ Iτ , 0 < α < 1, τ i = max
1≤j≤n

τ ij .

REMARK 4. The results can be also carried out for the following system which
allows a classical constant delay{

qC
α
a x(t) = f(t, x(t), x(t− τ)) t ∈ [a, b], b ≤ ∞,

xi(t) = φi(t) t ∈ [a− τ , a].

REMARK 5. The analysis carried out in this paper is based on the use of nabla
rather than delta operators. Indeed, unlike the delta operator the range of nabla
fractional sum and difference operators depends only of the starting point and inde-
pendent of the order α. This provides exceptional ability to treat skillfully different
circumstances throughout the proofs. The delta approach can be obtained from nabla
operator through the implementation of the dual identities discussed in [38].
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5 Conclusion

The q-fractional difference equations are regarded as fractional analogue of q-difference
equations. Motivated by their widespread applications in many disciplines, the topic of
q-fractional equations has attracted the attention of many researchers during the last
three decades. In parallel with the recent interests in this topic, an existence result
for a type of nonlinear delayed q-fractional difference equations is investigated in this
paper. The main equation is constructed in the sense of Caputo such that it fits many
real life applications. The proof of the main result is based on the employment of
Krasnoselskii fixed point and Arzela-Ascoli’s theorems. Prior to the main results, pre-
liminary assertions are addressed on the properties of q-fractional difference equations.
The applicability of the proposed results is discussed by linking the main theorem to
an existence result for Lotka-Volterra model.
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