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Abstract

In this paper, we consider the long time behavior of solutions for two-dimensional
generalized Benjamin-Bona-Mahony equations with periodic boundary conditions.
By the method of orthogonal decomposition, we show that the existence of asymp-
totic attractor from the precision of approximate inertial manifolds. Moreover,
the dimensions estimate of the asymptotic attractor is obtained.

1 Introduction

It is well known that the concept of an inertial manifold plays an important role in the
investigation of the long-time behavior of infinite dimensional dynamical systems, see,
for example, [5, 6, 8, 10]. Inertial manifold is a finite dimensional invariant manifold
in the phase space H of the system which attracts exponentially all orbits. It is con-
structed as the graph of a mapping from PH to (I-P)H, where P is a projection of
finite dimension N. However, the existence usually holds under a restrictive spectral
gap condition. To investigate the case when the spectral gap condition does not hold,
the concepts of approximate inertial manifolds have been introduced in [7].
But the precision of approximate inertial manifolds is inextricably diffi cult at all

times. To overcome this diffi culty the concept of asymptotic attractor has been intro-
duced [14].
Now let us recall the definition of the asymptotic attractor. We consider the solution

u(t) of a differential equation
ut +Au = F (u), (1)

with initial data
u(0) = u0. (2)

The variable u(t) belongs to a linear space E called the phase space, and F is a mapping
of E into itself. The semigroup S(t)t≥0 denotes the solution map associated to problem
(1)—(2):

S(t) : u0 ∈ E→ u(t) ∈ E. (3)
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If B is a bounded absorbing set, then

A =
⋂
s≥0

⋃
t≥s,u0∈B

S(t)u0 (4)

is a global attractor for problem (1)—(2).

DEFINITION 1.1 ([14]). Let E be a finite-dimensional subspace E, and let B be a
bounded absorbing set in E. Suppose there exists a number t∗(B) > 0 such that for
all u0 ∈ B and all t > t∗(B), there exists a sequence {uk(t)}N ⊂ E such that

‖uk(t)− S(t)u0‖E → 0, k →∞. (5)

Then the sequence of sets Ak defined by

Ak =
⋂
s≥0

⋃
t≥s,u0∈B

uk(t) (6)

is called an asymptotic attractor of the problem (1)—(2).

In an asymptotic attractor Ak, we know ‖ · ‖E is the module of phase space E,
uk(t) depends on the initial value of u0, and t∗(B) only depends on the radius of
absorbing sets. In other words, t∗ is consistent with u0 of B. When k → +∞, if
the limit value exists, then the limit value is a global attractor; otherwise, there is no
global attractor. we can discuss the structure of Ak, since uk is the solution of finite
dimensional dynamical systems. (5) guarantees the asymptotic approximation of uk(t)
to the real solution of u(t), and not only the approximation. In the next section, we
construct a finite dimensional asymptotic solution to the generalized Benjamin-Bona-
Mahony equations, and then prove the asymptotic solution to the real solution. Then
we give the asymptotic attractor of the generalized Benjamin-Bon-Mahony equations.
In this paper, we will show the existence of the asymptotic attractor for the following

generalized Benjamin-Bona-Mahony equations with periodic boundary conditions

ut − δ∆ut − µ∆u+∇ · F(u) = h(x), (7)

∂ju(x, t)

∂xji
=
∂ju(x+ 2πei, t)

∂xji
, j = 0, 1, 2, i = 1, 2. (8)

u(x, 0) = u0(x), u0(x) = u0(x+ 2πei), (9)∫
Ω

u(x, t)dx = 0, (10)

where x = (x1, x2) ∈ Ω, Ω = [0, 2π] × [0, 2π], e1 = (1, 0), e2 = (0, 1), δ and µ are
positive constants, F = (F1(s), F2(s)) is a given vector filed satisfying the following
properties:

(i) Fk(0) = 0, k = 1, 2;

(ii) the function Fk, k = 1, 2 are twice continuously differentiable in R1;
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(iii) the functions fk(s) = d
dsFk(s), k = 1, 2, satisfy the growth conditions

|fk(s)| ≤ C(1 + |s|m), k = 1, 2, 0 ≤ m < 2.

The existence and uniqueness of solutions, as well as the decay rates of solutions for
this equation was studied by many authors, see, for example, [1, 2, 3]. On the other
hand, the long-time behavior for this equation were considered also by many authors,
see, for example, [4, 9, 11, 12, 13, 15, 16, 17].
Here, by the method of orthogonal decomposition, we show the existence of as-

ymptotic attractor for problem (7)—(10). Furthermore, the dimensions estimate of the
asymptotic attractor is obtained. Throughout this paper, we set ‖u‖2 =

∫
Ω
|u|2dx and

Ḣ2
per(Ω) =:

{
u : Dαu ∈ L2(Ω), ∀0 ≤ |α| ≤ 2;

∫
Ω

u(x, t)dx = 0; u(x, t) = u(x+ 2πei, t), x ∈ R2

}
.

Applying Faedo-Galerkin method similar to [4], it is easy to prove that the problem
(7)—(10) has a unique solution u(t) ∈ Ḣ2

per(Ω) if u0(x) ∈ Ḣ2
per(Ω) and h(x) ∈ L2(Ω).

Moreover, there are t0 > 0 and ρ0 > 0 such that

B =
{
u(t) ∈ Ḣ2

per(Ω) : ‖u(x, t)‖2 + δ‖∇u(x, t)‖2 ≤ ρ2
0, t ≥ t0

}
is a bounded absorbing set. Now we are in a position to state our main result:

THEOREM 1.2. If u0(x) ∈ Ḣ2
per(Ω) and h(x) ∈ L2(Ω), the semigroup S(t) as-

sociated with problems (7)—(10) possesses an asymptotic attractor Ak in Ḣ2
per(Ω).

Moreover, the dimension of Ak satisfies

NAk = min

{
N ∈ N :

(‖h‖+ 2C1δ
− 1
2 ρ0(1 + ρm0 ))2

C2µ(N + 1)2ρ2
0

≤ 1,

2

C2µ

(√
2C1(1 + ρm0 )

N + 1
+

C4ρ0

2(N + 1)2δ
1
2

)2

< 1

}
,

where C2 = min{µ(N + 1)2, µ2δ}.

2 Asymptotic Attractor

In this section, we show the existence of asymptotic attractor for problem (7)—(10) by
the method of the orthogonal decomposition. Let

{cos k1x1 cos k2x2, cos k1x1 sin k2x2, sin k1x1 cos k2x2,

sin k1x1 sin k2x2, k1, k2 = 1, 2, · · · .}
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be an orthogonal basis of L̇2
per(Ω) and denote

HN = span {cos k1x1 cos k2x2, cos k1x1 sin k2x2, sin k1x1 cos k2x2,

sin k1x1 sin k2x2, k1, k2 = 1, 2, ..., N} .

Let PN : L̇2
per(Ω)→ HN and QN = I − PN . For any u(x, t) ∈ L̇2

per(Ω), we denote

p = PNu and q = QNu.

By projecting (7) on the HN , we have

pt − δ∆pt − µ∆p+ PN (∇ · F(u)) = PNh (11)

and
qt − δ∆qt − µ∆q +QN (∇ · F(u)) = QNh. (12)

For any u0(x) ∈ B, we set uk = p+ qk satisfying: q0
t − δ∆q0

t − µ∆q0 +QN (∇ · F(p)) = QNh,
q0(x, t) = q0(x+ 2πei, t), i = 1, 2,
q0(x, 0) = QNu0

(13)

and  qkt − δ∆qkt − µ∆qk +QN (∇ · F(uk−1)) = QNh,
qk(x, t) = qk(x+ 2πei, t), i = 1, 2,
qk(x, 0) = QkNu0.

where QkN = QN −Q2k+1N , k = 1, 2, · · · .
Thus by (12)—(13), we can get a sequence {uk(t)} for problem (7)—(10). To prove

Theorem 1, it suffi ces to check the condition (5), that is, to prove the following Lemmas
2.2 and 2.3.

LEMMA 2.1. Under the hypotheses of q = QNu for N ∈ N, we can get

‖∇q‖2 ≥ 2(N + 1)2‖q‖2.

PROOF. Here we have

u =

∞∑
k,k1,k2=1

(
u1
k cos k1x1 cos k2x2 + u2

k cos k1x1 sin k2x2

+u3
k sin k1x1 cos k2x2 + u4

k sin k1x1 sin k2x2

)
,

where u1
k, u

2
k, u

3
k, u

4
k are constants. Noting that

q = QNu for N ∈ N,

it follows that

q =

∞∑
k,k1,k2=N+1

(
u1
k cos k1x1 cos k2x2 + u2

k cos k1x1 sin k2x2

+u3
k sin k1x1 cos k2x2 + u4

k sin k1x1 sin k2x2

)
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and

‖q‖2 =

∞∑
k=N+1

(
|u1
k|2 + |u2

k|2 + |u3
k|2 + |u4

k|2
)
.

Therefore

∇q =

(
∂q

∂x1
,
∂q

∂x2

)
=

( ∞∑
k,k1,k2=N+1

[
− k1u

1
k sin k1x1 cos k2x2 − k1u

2
k sin k1x1 sin k2x2

+ k1u
3
k cos k1x1 cos k2x2 + k1u

4
k sin k1x1 sin k2x2

]
,

∞∑
k,k1,k2=N+1

[
− k2u

1
k cos k1x1 sin k2x2 + k2u

2
k cos k1x1 sin k2x2

− k2u
3
k sin k1x1 sin k2x2 + k4u

4
k sin k1x1 cos k2x2

])
,

and

‖∇q‖2 =

∥∥∥∥ ∂q∂x1

∥∥∥∥2

+

∥∥∥∥ ∂q∂x2

∥∥∥∥2

=

∞∑
k,k1,k2=N+1

(k2
1 + k2

2)(|u1
k|2 + |u2

k|2 + |u3
k|2 + |u4

k|2)

≥ 2(N + 1)2
∞∑

k=N+1

(|u1
k|2 + |u2

k|2 + |u3
k|2 + |u4

k|2)

= 2(N + 1)2‖q‖2.

LEMMA 2.2. Assume that u(x, t) is a solution for problem (7)—(10) with u0(x) ∈ B,
and qk(k = 0, 1, 2, · · · ) satisfy (12)—(13). Then there are N0 ∈ N and t∗1(B) > 0 such
that for N ≥ N0,

‖uk‖2 + δ‖∇uk‖2 ≤ 2ρ2
0, t ≥ t∗1(B), k = 0, 1, 2, · · · . (14)

PROOF. We only need to prove the following inequality:

‖qk‖2 + δ‖∇qk‖2 ≤ ρ2
0. (15)
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Here we verify (15) by the inductive method. Firstly, multiplying (12) by q0, we have

1

2

d

dt
(‖q0‖2 + δ‖∇q0‖2) + µ‖∇q0‖2 ≤ ‖q0‖ (‖h‖+ ‖∇ · F(p)‖)

≤ ‖∇q0‖√
2(N + 1)

(‖h‖+ ‖f1(p)px1 + f2(p)px2‖)

≤ ‖∇q0‖√
2(N + 1)

(‖h‖+ 2C1(1 + |p|m)‖∇p‖)

≤ ‖∇q0‖√
2(N + 1)

(
‖h‖+ 2C1(1 + ρm0 )δ−

1
2 ρ0

)
≤ µ

2
‖∇q0‖2 +

1

4µ(N + 1)2

(
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

.

It follows that

d

dt
(‖q0‖2 + δ‖∇q0‖2) + µ‖∇q0‖2 ≤ 1

2µ(N + 1)2

(
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

.

Note that

µ‖∇q0‖2 =
µ

2
‖∇q0‖2 +

µ

2
‖∇q0‖2

≥µ(N + 1)2‖q0‖2 +
µ

2δ
δ‖∇q0‖2 ≥ C2(‖q0‖2 + δ‖∇q0‖2),

where C2 = min{µ(N + 1)2, µ2δ}. Then we have

d

dt
(‖q0‖2 + δ‖∇q0‖2) + C2(‖q0‖2 + δ‖∇q0‖2) ≤

(
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

2µ(N + 1)2
.

By Gronwall’s Lemma, we have

‖q0(t)‖2 + δ‖∇q0(t)‖2

≤ (‖q0(0)‖2 + δ‖∇q0(0)‖2)e−C2t +

(
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

2C2µ(N + 1)2
(1− e−C2t).

There exists a t∗11(B) > 0, such that for ∀t ≥ t∗11(B), we have

‖q0(t)‖2 + δ‖∇q0‖2 ≤

(
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

C2µ(N + 1)2
.

Let N be so large that (
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

C2µ(N + 1)2ρ2
0

≤ 1, (16)
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we have
‖q0‖2 + δ‖∇q0‖2 ≤ ρ2

0, t ≥ t∗11(B). (17)

Now assume that ‖qk−1‖2 + δ‖∇qk−1‖2 ≤ ρ2
0 holds, we shall prove that for ∀k (15)

holds. Multiplying (13) by qk, we have

1

2

d

dt
(‖qk‖2 + δ‖∇qk‖2) + µ‖∇qk‖2 ≤

(
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )2

)
‖qk‖.

By using similar argument as above, we can obtain

d

dt
(‖qk‖2 + δ‖∇qk‖2) + C2(‖qk‖2 + δ‖∇qk‖2) ≤

(
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

2µ(N + 1)2
.

By Gronwall’s Lemma, there exists a t∗12(B) > 0, such that for ∀t ≥ t∗12(B), we have

‖qk(t)‖2 + δ‖∇qk‖2 ≤

(
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

C2µ(N + 1)2
.

Let N be so large that (
‖h‖+ 2C1δ

− 1
2 ρ0(1 + ρm0 )

)2

C2µ(N + 1)2ρ2
0

≤ 1, (18)

we have
‖qk‖2 + δ‖∇qk‖2 ≤ ρ2

0, t ≥ t∗11(B). (19)

Let t∗1(B) = max{t∗11(B), t∗12(B)}. Then (15) follows from (17) and (19). The proof of
Lemma 2.2 is completed.

LEMMA 2.3. Under the hypotheses of Lemma 2.2, there are N1 ∈ N and t∗2(B) > 0
such that for N > N1 we have

‖qk − q‖2 + δ‖∇qk −∇q‖2 → 0, k →∞, t ≥ t∗2(B). (20)

PROOF. Here we verify (20) by the inductive method. Firstly, set w0 = q0 − q, by
(11) and (12) we have

w0
t − δ∆w0

t − µ∆w0 +QN (∇ · F(p)−∇ · F(u)) = 0. (21)

Multiplying (21) by w0 we obtain

1

2

d

dt
(‖w0‖2 + δ‖∇w0‖2) + µ‖∇w0‖2

≤‖∇ · F(p)−∇ · F(u)‖‖w0‖ ≤ 4C1δ
− 1
2 ρ0(1 + ρm0 )‖w0‖.

By using similar arguement as above, we can obtain

d

dt
(‖w0‖2 + δ‖∇w0‖2) + C2(‖w0‖2 + δ‖∇w0‖2) ≤ 8C2

1ρ
2
0(1 + ρm0 )2

δµ(N + 1)2
.
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By Gronwall’s Lemma, there exists a t∗20(B) > 0 such that

‖w0(t)‖2 + δ‖∇w0(t)‖2 ≤ 16C2
1ρ

2
0(1 + ρm0 )2

C2δµ(N + 1)2
, t ≥ t∗20(B). (22)

Denote wk = qk − q, by (11) and (13), we have

wkt − δ∆wkt − µ∆wk +QN
(
∇ · F(uk−1)−∇ · F(u)

)
= 0, (23)

where k = 1, 2, · · · . Multiplying (23) by wk, we have

1

2

d

dt
(‖wk‖2 + δ‖∇wk‖2) + µ‖∇wk‖2 +

(
QN (∇ · F(uk−1)−∇ · F(u)), wk

)
= 0,

Now let us consider the last term(
QN (∇ · F(uk−1)−∇ · F(u)), wk

)
=

(
2∑
i=1

[fi(u
k−1)uk−1

xi − fi(u)uxi ], QNw
k

)

=

(
2∑
i=1

[
fi(u

k−1)wk−1
xi +

(
fi(u

k−1)− fi(u)
)
uxi
]
, QNw

k

)

=

(
2∑
i=1

fi(u
k−1)wk−1

xi , QNw
k

)

+

(
2∑
i=1

∫ 1

0

f ′i(θu
k−1 + (1− θ)u)dθwk−1uxi , QNw

k

)
.

So we have

1

2

d

dt
(‖wk‖2 + δ‖∇wk‖2) + µ‖∇wk‖2

≤ 2C1(1 + |uk−1|m)‖∇wk−1‖‖wk‖+ C3‖wk−1‖‖∇u‖‖wk‖

≤ 2C1(1 + ρm)‖∇wk−1‖ · 1√
2(N + 1)

‖∇wk‖

+C3δ
− 1
2 ρ0 ·

1

2(N + 1)2
‖∇wk−1‖‖∇wk‖

≤ µ

2
‖∇wk‖2 +

1

2µ
·
(√

2C1(1 + ρm0 )

(N + 1)
+

C3ρ0

2(N + 1)2δ
1
2

)2

‖∇wk−1‖2.

It follows that

d

dt
(‖wk‖2 + δ‖∇wk‖) + C2(‖wk‖2 + δ‖∇wk‖2)

≤ 1

µ

(√
2C1(1 + ρm0 )

N + 1
+

C3ρ0

2(N + 1)2δ
1
2

)2

‖∇wk−1‖2, (24)
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where(k = 1, 2, · · · .). Let k = 1 in (24), we have

d

dt
(‖w1‖2 + δ‖∇w1‖2) + C2(‖w1‖2 + δ‖∇w1‖2)

≤ 1

µ

(√
2C1(1 + ρm0 )

N + 1
+

C3ρ0

2(N + 1)2δ
1
2

)2

‖∇w0(t)‖2. (25)

By Gronwall’s lemma, there is a t∗21(B) > 0 such that

‖w1‖2 + δ‖∇w1‖2

≤ 2

C2µ

(√
2C1(1 + ρm0 )

(N + 1)
+

C3ρ0

2(N + 1)2δ
1
2

)2

‖∇w0(t)‖2, t ≥ t∗21(B). (26)

By the inductive method, there is a t∗2k(B) > 0 such that

‖wk‖2 + δ‖∇wk‖2

≤ 2k

Ck2µ
k

(√
2C1(1 + ρm0 )

N + 1
+

C3ρ0

2(N + 1)2δ
1
2

)2k

‖∇w0(t)‖2, t ≥ t∗2k(B), (27)

where k = 1, 2 · · · . If N is large enough, such that

2

C2µ

(√
2C1(1 + ρm0 )

N + 1
+

C4ρ0

2(N + 1)2δ
1
2

)2

< 1, (28)

then (20) follows from (22) and (27). The proof of Lemma 2.3 is completed.

In the above lemma, the asymptotic approximation of the real solution is proved,
and the dimension of the asymptotic solution is estimated. Now we explain the com-
pactness of Ak in Ḣ2

per(Ω). It is indispensable. First we use the characterisation

Ak =
⋂
s≥0

⋃
t≥s,u0∈B

uk(t).

Since for t ≥ s, the sets
⋃
t≥s,u0∈B u

k(t) form a sequence of nonempty compact sets
decreasing as t increases, their intersection Ak is nonempty and compact. Next, to
show invariance, suppose that

x ∈ Ak = {y : ∃tn →∞, Sk(tn)u0 → y},

we find that there exist sequences {tn} with tn →∞ such that Sk(tn)u0 → x and

Sk(t)Sk(tn)u0 = Sk(t+ tn)u0 → Sk(t)u0

since S(t) is continuous. So S(t)Ak ⊂ Ak. To show equality, for tn ≥ t+s, the sequence
Sk(tn − t)u0 is in the set ⋃

t≥s,u0∈B
uk(t)
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and so possesses a convergent subsequence Sk(tnj − t)u0 → y, and so y ∈ Ak. But
since S(t) is continuous,

x = lim
j→∞

S(t)S(tnj − t)xnj = S(t)y,

and so AK ⊂ S(t)Ak. Thus S(t)Ak = Ak for all t ≥ s. The proof of invariance is
completed. Therefore, Ak is the asymptotic attractor.
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