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Abstract

Given a prime number p, put q := pp so that Fq is the Artin-Schreier extension
of Fp with minimal polynomial mp(x) := xp−x−1.We prove that d2 | g(p) if and
only if α := rQp−2(p) = 1 provided that pp ≡ 1 − dp (mod d2), where r ∈ Fq is
any root of mp(x), g(p) = q−1

p−1 , d = 2kp+1 is the order of r in the multiplicative
cyclic group of nonzero elements of Fq and, where Qp−2(x), Sp−2(x) are the unique
polynomials in Q[x] such that deg(Qp−2(x)) ≤ p− 2 and

1− xp = (1− x) · (1 + 2kx) ·Qp−2(x) + xp−1Sp−2(x).

Moreover, under the same condition, we are able to prove, that indeed g(p)/d ≡
Qp−2(p) ≡ p

1−p (mod d) so that d
2 - g(p), and that 2d2 < g(p).

1 Introduction

DEFINITION 1. The Bell numbers B(n) are defined by B(0) := 1, and B(n + 1) :=∑n
k=0

(
n
k

)
B(k).

The Bell numbers B(n) are positive integers that arise in combinatorics. Besides
the Definition 1 that appears in [11], other definitions, or characterizations, exist (see,
e.g. [1], [4, page 371], [15], [17]). Williams [8] proved that, for each prime number p, the
sequence B(n) (mod p) is periodic. In all the paper we keep the following notations.
We denote by p an odd prime number. We call an integer d a period of B(n) (mod p)
if for all nonnegative integers n one has B(n + d) ≡ B(n) (mod p). We set q := pp;
Fp is the finite field with p elements, and Fq is the finite field with q elements, the
Artin-Schreier extension of degree p of Fp generated by an element r, a root of the
irreducible trinomial xp − x − 1 in some fixed algebraic closure of Fp. We denote by
o(r) the order of r in the cyclic group F∗q of nonzero elements of Fq. We denote by Tr
the trace function from Fq onto Fp, we denote by N the norm function from Fq onto
Fp. We put c(p) := 1 + 2p+ 3p2 + · · ·+ (p− 1)pp−2.
It is interesting to observe that the minimal period d := o(r) of B(n) (mod p) is

conjectured, but not proved, (see [2, 5, 11, 14, 15, 16, 17]). to be equal to g(p), where
g(p) := 1 + p + p2 + · · · + pp−1. We know that d is a divisor of g(p) so that d ≤ g(p).
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Clearly, for any k in 0 ≤ k < p, B(n) ≡ k (mod p) satisfies n ≤ d, so that n is bounded
above by a polynomial in p, namely by g(p). A big improvement of this simple upper
bound is in [6], where it is proved that indeed n < 1

2

(
2p
p

)
. Moreover, in [7] it is proved

that 22.54p < d. Both results are non-trivial. In other words one has

n <
1

2

(
2p

p

)
< 22.54p < d ≤ g(p).

Furthermore, (see [14, Lemma 1.1]) d ≡ 1 (mod 2p) always, and d ≡ 1 (mod 4p) when
p ≡ 3 (mod 4) since d is a divisor of g(p). A recent paper about Bell numbers modulo
a prime number is [13].
The purpose of the present paper is to prove the following three theorems. The

following condition on p is important for the proofs.

pp ≡ 1− dp (mod d2). (1)

Our first theorem consists of observing the following fact about d = o(r) that
appears unnoticed. See Lemma 1 for the definition of Qp−2(p).

THEOREM 1. Assume that p satisfies (1). Then d2 divides g(p) if and only if
α := rQp−2(p) = 1.

The second theorem proves that the condition d2 | g(p) in Theorem 1 does not hold.

THEOREM 2. Assume that p satisfies (1). One has that g(p)
d ≡ p

1−p (mod d) so
that the condition in Theorem 1 does not hold, i.e., d2 - g(p).

The third theorem gives a non-trivial upper bound for d.

THEOREM 3. Assume that p satisfies (1). If d < g(p) then 2d2 < g(p).

REMARK 1. Sligthly better upper bounds are possible in Theorem 3, with the
same method (see proof).

REMARK 2. It is easy to see that the condition d2 | g(p) in Theorem 1 is also
equivalent to

(a) α ∈ Fp since N(α) = 1.

(b) B(n) ≡ 0 (mod p) for n := Qp−2(p)+c(p)+1 since this is equivalent to Tr(α) = 0
by definition of period of B(n) and from [9, Theorem 2] (quoted as [13, formula
(1)]) and since Tr(rc(p)) 6= 0 (see Lemma 2).

REMARK 3. Although by Theorem 2, d2 does not divide g(p), provided pp ≡ 1−dp
(mod d2), it is unknown if g(p) is divisible by a square of a number, for some prime
number p. Some numerical evidence obtained over small prime numbers p suggests
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that g(p) should be square-free. Since factoring g(p) is non-trivial for large primes p,
we may consider the very special case in which g(p) itself is a square. This can be
checked (false) quickly even for large primes. But, indeed these computations are not
necessary since it follows immediately from Ljunggren’s result (see Lemma 3) that for
any odd prime number p (and for p = 2 directly), g(p) is never the square of an integer.
On the other hand, a proof that g(p) is actually square-free, for any prime p, appears
hopeless at present.

The following interesting remark on the size of possible squares dividing g(p) is
from the referee.

REMARK 4. The abc conjecture implies that any square dividing pp − 1 should
be relatively small. In particular, the condition d2 | g(p) in Theorem 1 is (a priori)
unlikely to hold.

REMARK 5. It is interesting to know whether or not these theorems can hold
unconditionally. We explain in Lemma 4 below several equivalent forms of the condition
(1).

2 Some Tools

The following lemma follows from considering A/B modulo xn+1.

LEMMA 1. Let p be a prime number, let k be a positive integer, and let n be any
nonnegative integer. Let A := 1 − xp and B := (1 − x)(1 + 2kx). Then there exist
unique polynomials with rational coeffi cients Qn and Sn such that deg(Qn) ≤ n and

A = BQn + x
n+1Sn.

The following lemma is contained in [13, Lemma 8, Lemma 42].

LEMMA 2. Let e := Tr(y) where y is any nonzero solution of the equation yp = ry
in Fq. We put a := Tr(rc(p)) and b := Tr(r−c(p)). Then

(i) a and b satisfy ab ≡ −1 (mod p), so that they are both nonzero in Fp.

(ii) e is nonzero.

(iii) a = B(c(p)) so that b = −1
B(c(p)) .

The following lemma of Ljunggren [3] is included in [12, Theorem NL].

LEMMA 3. Equation

xn − 1
x− 1 = y2, in integers x > 1, y > 1, n > 2,
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has the unique solution (x, y, n) = (7, 20, 4).

LEMMA 4. Put d := 2kp + 1, b := (2k)p+1
2k+1 . The following statements are all

equivalent

(a) pp ≡ 1− dp (mod d2).

(b) g(p)/d ≡ p/(1− p) (mod d).

(c) b ≡ 0 (mod d2).

(d) b0/d ≡ p2/(1 − p) (mod d) and b1 ≡ p2/(p − 1) (mod d), where b = b0 + b1d
(mod d2).

PROOF. Since 2k = (d− 1)/p we obtain immediately b ≡ b0+ b1d (mod d2) where

b0 =
p

p− 1

(
1− 1

pp

)
(2)

and

b1 =
p

(p− 1)2

(
1

pp
(p2 − p) + 1

pp
− 1
)
. (3)

Since g(p) = pp−1
p−1 one sees that (a) is equivalent to (b). One sees that b0 ≡ 0 (mod d)

since pp ≡ 1 (mod d). For the same reason we get b1 ≡ p2

p−1 (mod d).We have also
b0
d =

g(p)
dpp−1 ≡

pg(p)
d (mod d). Observe also that b ≡ 0 (mod d2) is equivalent to b0

d + b1 ≡ 0
(mod d). Finally observe that p and (p− 1) are both inversible modulo d and modulo
d2. The result follows.

3 Proof of Theorem 1

If d = g(p) the condition (1) is void so that d < g(p) in what follows. Apply Lemma 1
with n := p− 2 to get

A := BQp−2 + x
p−1Sp−2, (4)

where A and B are defined as in Lemma 1. Write Qp−2 = Qp−2(x) = q0 + q1x+ · · ·+
qp−2x

p−2. Observe that the qs’s are integers defined by

qs =
1− (−2k)s+1
2k + 1

, for s = 0, . . . , p− 2, (5)

so that, in particular, qp−2 6= 0. Since both sides of (4) have the same degree and
deg(BQp−2) = 2 + p− 2 = p we obtain

deg(xp−1Sp−2) ≤ p. (6)

Thus (6) implies
deg(Sp−2) ≤ 1.
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Case 1. deg(Sp−2) < 1. In other words, Sp−2 = c for some constant. Replace x = 1
into both sides of (4) to get c = 0, i.e., Sp−2 = 0 so that

A = BQp−2. (7)

But, (7) implies the contradiction that − 1
2k 6= 1 is a rational root of the irreducible

polynomial A
1−x = 1 + x+ · · ·+ x

p−1. Thus Case 1 can’t happen.
Case 2. deg(Sp−2) = 1, say, Sp−2 = ax + b with a 6= 0. Replace x = 1 into both

sides of (4) to get a = −b, i.e., Sp−2 = b(1 − x) so that by dividing both sides of (4)
by 1− x one gets in Q[x] (indeed in Z[x]),

1− xp
1− x = (1 + 2kx)Qp−2(x) + bx

p−1. (8)

It follows from (5) that

qp−2 =
1− (2k)p−1
1 + 2k

. (9)

On the other side, by computing the leading coeffi cient in both sides of (8) one gets

b = 1− 2kqp−2. (10)

Thus, from (9) and (10) we obtain

b =
(2k)p + 1

2k + 1
. (11)

Choose k such that d = 2kp+ 1. Thus it follows from (4) that

g(p)

d
=
A(p)

B(p)
= Qp−2(p) +

b

d
pp−1. (12)

Set α := rQp−2(p). Now, by part c) of Lemma 4 we have b ≡ 0 (mod d2), so that we
get from (12)

Qp−2(p) ≡
A(p)

B(p)
≡ g(p)

d
(mod d). (13)

Therefore, we see from (13) that d divides Qp−2(p), i.e., α = 1, is equivalent to

d2 | g(p).

thereby proving the claim.

4 Proof of Theorem 2

Follows immediately from part b) of Lemma 4.
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5 Proof of Theorem 3

Define f by g(p) = df. From (13) and from Lemma 4 we get

f ≡ p

1− p (mod d). (14)

Thus, for some positive integer M one has

f(p− 1) + p =Md. (15)

Since d and f are divisors of g(p) both are congruent to 1 (mod p). Thus, (15) implies
M = Np − 1 ≥ p − 1, for some positive integer N. But, by (15), M is odd, so that
Md ≥ pd. In other words (15) becomes

f(p− 1) ≥ p(d− 1). (16)

So by multiplication of both sides of (16) by d, we obtain

d(d− 1) ≤ pp − 1
p

< g(p) = df. (17)

Thus, (17) implies d− 1 < f. But, d and f are both odd so that f ≥ d. In other words
we get d2 ≤ g(p). But by Lemma 3, (or by Theorem 2), we have indeed d2 < g(p).
Recall that d | g(p). Thus, recalling also that d and g(p) are both odd and both equal
to 1 modulo p; and that g(p) ≡ 1 (mod 4), one has

d2 = g(p)− 4Kdp. (18)

for some positive integer K.
Divide both sides of (18) by dp, reduce modulo d, and use Theorem 2 to get

4K ≡ g(p)

dp
≡ 1

1− p (mod d). (19)

In other words, (19) really says that for some positive integer L one has

4K(p− 1) + 1 = dL ≥ d. (20)

From (20) we get successively: 4K ≥ d−1
p−1 > d−1

p so that 4Kp > d − 1. Thus (18)
implies

g(p) > d2 + d(d− 1). (21)

Now, proceeding as before we see, from (21), that g(p) = d2+ d(d− 1)+ dT where the
positive integer T satisfies T ≡ 1

1−p (mod d). Thus d | T (p − 1) + 1 that leads to the
inequality T ≥ d−1

p−1 . Observe that (d− 1)(1+
1
p−1 ) > d, since p < d. Therefore we have

g(p) ≥ d2 + d(d− 1)
(
1 +

1

p− 1

)
> d2 + d2, (22)
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thereby completing the proof of Theorem 3.

Acknowledgment. We thank the referee for careful reading, and for great sug-
gestions that lead to an improved paper. In particular the simpler proof of Lemma
1 was suggested by the referee. We do not know how to answer the following two
nice questions of the referee: Does Qp−2(p) | g(p) ? and if not, how big does become
gcd(Qp−2(p), g(p)) ?. But these questions are very motivating in order to try to advance
further, in the future, on trying to understand the relation between d and g(p).
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