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Abstract

In this paper, we obtain an analog of Younis Theorem 5.2 in [7] for the Jacobi-
Dunkl transform on the real line for functions satisfying the (7, ~)-Jacobi-Dunkl
Lipschitz condition in the space L?(R, Aq,5(2)dz) where > 8 > St and a # 3.

1 Introduction

Younis Theorem 5.2 [7] characterized the set of functions in L?(R) satisfying the Dini
Lipschitz condition by means of an asymptotic estimate growth of the norm of their
Fourier transforms, namely we have the following Theorem 1.1.

THEOREM 1.1 ([7, Theorem 5.2]). Let f € L?(R). Then the following statements
are equivalents

(a) ||f(x+h)—f(x)||:0( L )aSh—>0,WhereO<77<1and’yZO.

(log +)7

(b) fIAIZT IFN)2dA =0 (%) as r — 00, where f stands for the Fourier trans-

(log r
form of f.

In this paper, we obtain an analog of Theorem 1.1 for the Jacobi-Dunkl transform
on the real line. For this purpose, we use a generalized translation operator. In
this section, we recapitulate from [1, 2, 3, 5] some results related to the harmonic
analysis associated with Jacobi-Dunkl operator A, g. The Jacobi-Dunkl function with
parameters (a, 8), « > 8 > _71, and o # _71, defined by the formula

@B (p) — L d o8 if A e C\{0

Pu T s P X)) 51 )

ver, yoi | OOk \{0}
1 ,if A =0.
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where A\* = 12+ p?, p = a+ B +1, F is the Gausse hypergeometric function (see [1,6]),
and @z’ﬁ is the Jacobi function given by

+ip p—i :
Spff’ﬁ(x) =F <p 2z,u; P 2Z'u;a+ 1;—(smh(3:))2> .

Then 1#?"8 is the unique C°°-solution on R of the differentiel-difference equation
Ap g =idU MeC,
{ uo) =1,
where A, g is the Jacobi-Dunkl operator given by

dU ()

Ao plU(z) = =2 = +[(2a+ 1) cothz + (26 + 1) tanh 2] x Ulz) —U(=z)

2

The operator A, g is a particular case of the operator D given by

DU(z) = H2) | A) (u(@u(:c))

dx + A(x) % 2

where A(z) = |z|?**1B(z), and B a function of class C* on R, even and positive. The
operator A, g corresponds to the function

A(z) = Aq () = 2°(sinh |2])?* T (cosh |z|) 2P+
Using the relation

d _‘u2+p2

o, _ K a+1,8+1
%‘Pu (z) = mﬁmh(%)@u (z),

the function w‘;"ﬁ can be written in the form above (see [2])

w‘;’ﬂ(m) = @Z"B(x) +i sinh(2x)apz‘+1’5+1(9&), z € R.

A
4(a+1)

Denote L, ;(R) = L%, ;(R, Ay p(z)dz), 1 < p <2, the space of measurable functions f
on R such that

1/p
s = ( / |f<x>PAa,ﬁ<x>dx) S

Using the eigenfunctions w?\’ﬁ of the operator A, s called the Jacobi-Dunkl kernels, we
define the Jacobi-Dunkl transform of a function f € L, 5(R) by

FapfN) = /Rf(x)@/;;“ﬁ(x)Aaﬁ(x)dx, A ER,
and the inversion formula

flz) = /R Faps VL (2)do(N),
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where N
do(\) = Ig\j—p,p[(A)dA.
81V A — p?|Cap(VA® — p?))|
Here,
207 (o + 1)T(4 )
Ca,p(p) = (ot T (i) € C\(iN),

L(5(p+im)0 (50— B+ 1+1ip)’

and 1g\j_, [ is the characteristic function of R\] — p, p[. The Jacobi-Dunkl transform
is a unitary isomorphism from L2 ;(R) onto L*(R,do(})), i.e.,

I1f

Plancherel’s theorem (1) and the Marcinkiewics interpolation theorem (see [8]) we get
for f € L}, 4(R) with 1 < p <2 and g such that L + 1 =1,

20,8 = IFa.8(F)llL2®,d0(0))- (1)

1Fap (Dl La@aon) < Kllfllpa.s, (2)

where K is a positive constant (see [9]).
The operator of Jacobi-Dunkl translation is defined by

T, f(y) = / fR)d2B(z), Va,yeR,

where 1/2‘;5 (z), z,y € R are the signed measures given by
Ko p(x,y,2)Aap(z)dz ,if z,y € R¥,
dl/g‘f(z) =< Oz Jify =0,
Oy ,if x =0.

Here, ¢, is the Dirac measure at x. And,

Kop(z,y,2) = Ma75(sinh|x|sinh\y|sinh|z|)72a11zﬁyX/ pol3,4, 2)
0
x(go(x,y,2))% 7" sin* 9do,

Loy = [=lal = [yl =llz| = lyll} U {ll=] = [yll, 2] + ly]],

0 0 0
po(®,y,2) =1 =0y, .+ 02,y +0% .

cosh x+cosh y—cosh z cos 6 .
sinh z sinh y ’ if Ty # 0’

Vz€eR,0€0,7,00, . =
0 ,if zy =0,

go(z,y, z) = 1 — cosh?  — cosh? y — cosh? z + 2 cosh z cosh  cosh z cos 6,

£ ift >0,
t p—
" 0 ,ift<o,
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and
272 (a+1)
My p = V7l (a—B)T(8+3)

0 Jif a = 6.

,if a> f,

In [2], we have

Fap(Tnf)N) =93 (W) Fas(f)A) and Fop(Mapsf)N) = iAFas(f)N).  (3)

For a > *71, we introduce the Bessel normalized function of the first kind defined by

= ()

ja(:c)zr(aﬂ);m, zeR
Moreover, we see that .
t =5 20 @
by consequence, there exists C; > 0 and v > 0 satisfying
lja(x) — 1| > Cy|z|* for |z| < w. (5)

By Lemma 9 in [4], we obtain the following Lemma 1.2.

LEMMA 1.2. Let o > 8 > _71,a =+ _71 Then for |v| < p, there exists a positive
constant Cy such that

‘1 - ‘szw(@' > |1 — ja(pz)l.

Denote by L' (Aa,p),1 < p < 2,m =0,1,2,..., the class of functions f € L} 5(R)
that have generalized derivatives satisfying A 5 f € LY, 5(R), ie.,

L (Rap) = {1 € LD 5(R) : Al f € LL (R},

where Ag)ﬁf =fand Ajsf = Aaﬂ(Anglf) form=1,2,....

2 Dini Lipschitz Condition

Denote Ny, by
Np=Th+T_p — 21,

where I is the unit operator in the space L?, ;(R).

DEFINITION 2.1. Let f € L;'(Aq,5), and define

[NLAG 5 f(2)|lp.as < C v>0and m=0,1,2,...,

hn
(log )7’
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ie.,

X
AL @ ls = O (‘o )
pEEmes (log )7
for all z in R and for all sufficiently small h, C' being a positive constant. Then we say
that f satisfies a Jacobi-Dunkl Dini Lipschitz of order 7, or f belongs to Lip(n,~y, p).

DEFINITION 2.2. If

NpyA™  f(x
(S,

(log )7

ie.,

X
N AZ s f(@)lpas =0 | —— |,
INAZ s =0 (o llm)
then f is said to belong to the little Jacobi-Dunkl Dini Lipschitz class lip(n, v, p).
REMARK. It follows immediately from these definitions that

lip(n,~y,p) C Lip(n,v,p)-

THEOREM 2.3. Let n > 1. If f € Lip(n,~,p), then f € lip(1,~,p).

PROOF. For x € R, h small and f € Lip(n,~,p), we have

X
[Nk AG: 5. (2)llp,a,8 < C@-
Then L
(log 2 ) [Nk AG 5 f (2)llp.a,s < Ch.
Therefore, .
o8 ) N @)y < OB,

which tends to zero with h — 0. Thus

(log 7,)7

L | NDAT S @)lpas = 0. b= 0.

Then f € lip(1,~,p).

THEOREM 24. If n < v, then Lip(n,0,p) D Lip(v,0,p) and lip(n,0,p) D
lip(v, 0, p).

PROOF. We have 0 < h < 1 and n < v, then h¥ < h". Then the proof of the
theorem is immediate.
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3 New Results on Dini Lipschitz Class

LEMMA 3.1. For f € L'(As ), then

(/R 290" [P (h) — 1|q|fa,ﬁf(A)qu(A)) < K||NwAL 5 llp,a.p:
where % + % =land m=0,1,2,....

PROOF. From (3), we have
Fos(Ma g )N) =" X" Fo pg(f)(A), m=0,1,2,.... (6)

By using formulas (3) and (6), we conclude that

Fap(NuAZ s YN = ™5 () + 95D (—h) — 2)A™ Fa s (F)(N),

Since

W\ (h) = o (h) +i sinh(2h) 5 0 (h),

A
4(a+1)

) = e (=h) —i sinh(2h) ;17 (=),

A
4(a+1)

and gpfj’ﬁ is even, we see that

Fas(Nuha g f)(A) = 2" (¢ (h) = DA™ Fo 5 () ().

Now by formula (2), we have the result.

THEOREM 3.2. Let n > 2. If f belongs to the Jacobi-Dunkl Dini Lipschitz class,
ie.,
f € Lip(n,y,p), n>2,7=0.

Then f is null almost everywhere on R.

PROOF. Assume that f € Lip(n,~,p). Then we have

INnAG 5 f (@) lpas < C 720

h"
(log )7’
From Lemma 3.1, we get

K101  pan
N8 (h) — 1|9 Fo g f(N)|2do(N) < ——— ————.
LA ) =117 s e () < Toe 1)

In view of Lemma 1.3, we conclude that

K101  pm

1 — jo(uh)|TN Fy, Mdo(N) € —r ——7—.
L= e X s POV ) < S R
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Then
Jo 11 = Ga(uh)| TN | Fo 5 f(N)|9do(N) o Kaga pan—2a

h2 = 21CY (log D)1~

Since n > 2, we have
han—2q

lim ——— =
w0 (log 1)1
Thus

. 11— Ga(ph)|\?* 20\ qm
Jim, (m AT | Fap f(N)]*do(A) =0,

and also from the formula (4) and Fatou theorem, we obtain
N Fa ) 1o (3) = 0
Hence A" F, 5f(A) =0 for all A € R, and so f(z) is the null function.
Analog of the Theorem 3.2, we obtain this theorem.
THEOREM 3.3. Let f € L;'(Aqa,p). If f belong to lip(2,0,p), i.e.,
INW AL 5 f (@)llp.as = O(h?), as b —0.
Then f is null almost everywhere on R.

THEOREM 3.4. Let f belong to Lip(n,v,p). Then

—qn
A Fo 5 FON)|%dor (N _0<T), as 1 — 00,
[ A st () = 0 (e

where % + % =land m=0,1,2,....

PROOF. Let f € Lip(n,~,p). Then

hn

INb AL 5 f () ||p,ap = O <W> ; as h—0.

From Lemma 3.1, we have
qm|, a,B q q K1 m q
RA o (h) = 11 Fa,p F(N)|1do(A) < - INwAG 5 F (@),
By (5) and Lemma 1.2, we get
[ ATt Fa (I
77 <IAIL

> CiCg M b)) Fo g (F) (M) o ().
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From g7 < [A < £, we have
V2 2 2 (V)2 2
) 2« < (Z) _
(2h) =) T

— p*h.

which implies that

2
272 Y
h? > —
=y

Take h < é, then we have u2h? > C3 = C3(v). So

[ A 0 Es (Do)
7 <IAIS

v
h

> Il / X F (£ (V)| 2do (N).

3R <IA<E

Note that there exists then a positive constant Cy such that

/ A Fa s ()N)]Pdo(A) < @/dmu—ﬁMmmaﬁmumwu)
am SIA<% R
han
= Oo—).
((logi)W)
So we obtain
ran

A F N|%do(\) < Cg o,
e N Fa (DO < o

where C5 is a positive constant. Now, we have

oo

/|A> N Fo s (H)N)|Pdo(N) = Z/z e AT Fo 5 () (V) [4do (M)
>r — Jair<in< ity
r—4n (2r)—am (4r)—an
< G <(10gr)q7 g2+ Tog )7 +)
r—an (2r)=a"  (4r)~m
s G <(log r)ar  (logr)a” + (log )27 )
< Or (L2774 (T 27 )
ran

where K, = C5(1 —2797)~! since 2797 < 1. Consequently

pan
— ), as r — oo.
log )Y

[ i) = 0 ((
A[>r

Thus, the proof is finished.
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COROLLARY 3.5. Let f € L (Aq ). If

m h"
||NhAa,Bf||p,a,ﬁ_o<W), as B0

h

then
poam—aqn

7(10g ’I“)q'y) s as T — OQ.

[ sty = 0 (
[A[>7
where % + % =land m=0,1,2,...

DEFINITION 3.6. A function f € L} (A4 g) is said to be in the (1, v)-Jacobi-Dunkl
Dini Lipschitz class, denoted by Lip(v,~,p), if

Y(h)
(log )7

||NhA$5f(m)||p,a’ﬁ =0 < > , as h—0,v>0,

where

(1) 9(t) a continuous increasing function on [0, c0),
(2) ¥(0) =0,
(3) ¥(ts) = Y(t)y(s) for all ¢, s € [0, 00).

THEOREM 3.7. Let f belong to Lip(v,,p). Then

P(r=?)

Jup, XSO 0) =0 (Geer

), as r — 00,

where % + % =land m=0,1,2,...

PROOF. Let f € Lip(¢,~,p). Then

INAAT 5 F (@)l = O (
From Lemma 3.1, we have
am|, o3 q q Kt m q
[ Nl ) = 111 Fo 1) < G VAL F@)
By (5) and Lemma 1.2, we get
/ N1 — B (1)) Fo 5 (1)(N)|9dr(A)
37 <AL

> CiCg |h|*I AT Fo g () (V)1 da (N).
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From g5 < [A < # we have

which implies that

Take h < %, then we have p?h* > C5 = C3(v). So

/ <A< /\qm|1 ( )‘ |~7:a5( )()\)|qu()\)

> cicicy / X Fo (£ |do(N).

3R <IA<E

Note that there exists then a positive constant Cy such that

IN

/VS AT Fap(F)N)]Tda(N)
-0 (éé;ﬁ)) ~0(Togtim)

AT o 5(F)) o (M) < Cg )

6
r<|A|<2r (logr)a7”

where C§ is a positive constant. Now, we have

So we obtain

oo

/|A>r>‘qm7:a,6(f)()\)|qda(x\) = Z/21T<|>\<21+1 AT Fo 5(£)(N)|2der ()

P((2r)71) | P((4r)7)
= ( logr )2y log 2r)ay + (log 4r)9Y *
P((2r)™1) | P((4r)7)
= <logr av (log 7)™ + (logr)ay +
< gk (1402 4 @) 4 (2
P(r”?)
1 llogr o

where C,, = Cs(1 —1(279)) ! since )(279) < 1. Consequently,

m q _ Y(r )
//\|>T A Fosf(N)|¥da(X) = O ((logr)q’Y) , as 1 — 00,

and this ends the proof.

@/R L — G2 ()9 Fa ()N 2dor(N)

~

Q)+
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COROLLARY 3.8. Let f € L (Aq ). If

”NhAa,BfHP,Ofﬁ =0 <(

logi)"/)’ as h*)(),

then
Py ()

[ Fastniras) = 0 (Tt

), as 1 — 00,
where%+%:1andm:0,l,2,....
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