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Abstract

For a simple graph G, a vertex labeling φ : V (G) → {1, 2, · · · , k} is called
k-labeling. The weight of an edge xy in G, denoted by wπ(xy), is the sum of the
labels of end vertices x and y, i.e. wφ(xy) = φ(x) + φ(y). A vertex k-labeling is
defined to be an edge irregular k-labeling of the graph G if for every two different
edges e and f , there is wφ(e) 6= wφ(f). The minimum k for which the graph
G has an edge irregular k-labeling is called the edge irregularity strength of G,
denoted by es(G). In this paper, we determine the exact value of edge irregularity
strength of corona product of graphs with paths.

1 Introduction

Let G be a connected, simple and undirected graph with vertex set V (G) and edge set
E(G). By a labeling we mean any mapping that maps a set of graph elements to a set
of numbers (usually positive integers), called labels. If the domain is the vertex-set or
the edge-set, the labelings are called respectively vertex labelings or edge labelings. If
the domain is V (G) ∪E(G), then we call the labeling total labeling. Thus, for an edge
k-labeling δ : E(G)→ {1, 2, · · · , k} the associated weight of a vertex x ∈ V (G) is

wδ(x) =
∑

δ(xy),

where the sum is over all vertices y adjacent to x.
Chartrand et al. [14] introduced edge k-labeling δ of a graph G such that wδ(x) =∑
δ(xy) for all vertices x, y ∈ V (G) with x 6= y. Such labelings were called irregular

assignments and the irregularity strength s(G) of a graph G is known as the minimum
k for which G has an irregular assignment using labels at most k. This parameter has
attracted much attention [5, 8, 13, 15, 16, 20, 21].
Motivated by these papers, Baca et al. [11] defined a vertex irregular total k -labeling

of a graph G to be a total labeling of G,ψ : V (G) ∪ E(G) → {1, 2, · · · , k}, such that
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the total vertex-weights

wt(x) = ψ(x) +
∑

xy∈E(G)

ψ(xy)

are different for all vertices, that is, wt(x) 6= wt(y) for all different vertices x, y ∈ V (G).
The total vertex irregularity strength of G, tvs(G), is the minimum k for which G has a
vertex irregular total k-labeling. They also defined the total labeling ψ : V (G)∪E(G)→
{1, 2, · · · , k} to be an edge irregular total k-labeling of the graph G if for every two
different edges xy and x′y′ of G one has

wt(xy) = ψ(x) + ψ(xy) + ψ(y) 6= wt(x′y′) = ψ(x′) + ψ(x′y′) + ψ(y′).

The total edge irregularity strength, tes(G), is defined as the minimum k for which G
has an edge irregular total k-labeling. Some results on the total vertex irregularity
strength and the total edge irregularity strength can be found in [1, 2, 6, 9, 12, 18, 19,
21, 23, 24, 25].
The most complete recent survey of graph labelings is [17].
A vertex k-labeling φ : V (G)→ {1, 2, · · · , k} is called an edge irregular k-labeling of

the graph G if for every two different edges e and f , there is wφ(e) 6= wφ(f), where the
weight of an edge e = xy ∈ E(G) is wφ(xy) = φ(x) + φ(y). The minimum k for which
the graph G has an edge irregular k-labeling is called the edge irregularity strength of
G, denoted by es(G).
In [3], the authors estimated the bounds of the edge irregularity strength es and then

determined its exact values for several families of graphs namely, paths, stars, double
stars and Cartesian product of two paths. Mushayt [7] determined the edge irregularity
strength of cartesian product of star, cycle with path P2 and strong product of path
Pn with P2.
The following theorem established lower bound for the edge irregularity strength of

a graph G.

THEOREM 1 ([3]). Let G = (V,E) be a simple graph with maximum degree
∆ = ∆(G). Then

es(G) ≥ max

{⌈
|E(G)|+ 1

2

⌉
,∆(G)

}
.

In this paper, we determine the exact value of edge irregularity strength of corona
graphs of path Pn with P2, Pn with K1 and Pn with Sm.

2 Main Results

The corona product of two graphs G and H, denoted by G �H, is a graph obtained
by taking one copy of G (which has n vertices) and n copies H1, H2, . . . ,Hn of H, and
then joining the i-th vertex of G to every vertex in Hi.
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The Corona product Pn�Pm is a graph with the vertex set V (Pn�Pm) = {xi, yji :
1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge set

E(Pn � Pm) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {xiyji : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {yji y

j+1
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}.

In the next theorem, we determine the exact value of the edge irregularity strength of
Pn � P2.

THEOREM 2. For any integer n ≥ 2. Then es(Pn � P2) = 2n+ 1.

PROOF. Let Pn�P2 be a graph with the vertex set V (Pn�P2) = {xi, yji : 1 ≤ i ≤
n, 1 ≤ j ≤ 2} and the edge set

E(Pn � P2) = {xixi+1 : 1 ≤ i ≤ n− 1}
∪{xiyji : 1 ≤ i ≤ n, 1 ≤ j ≤ 2}
∪{y1i y2i : 1 ≤ i ≤ n}.

According to Theorem 1, we have that es(Pn�P2) ≥ 2n. Since every edge E(Pn�P2)\
{xixi+1} for 1 ≤ i ≤ n−1 are a part of complete graph K3, therefore under every edge
irregular labeling the smallest edge weight has to be at least 3 of said edges. Therefore
the smallest edge weight 2 and the largest edge weight 4n will be of edges xixi+1. For
this there will be two pair of adjacent vertices such that one pair of adjacent vertices
assign label 1, second pair of adjacent vertices assign label 2n, then there will be two
distinct edges having the same weight. Therefore es(Pn � P2) ≥ 2n+ 1. To prove the
equality, it suffi ces to prove the existence of an optimal edge irregular (2n+1)-labeling.
Let φ1 : V (Pn � P2)→ {1, 2, . . . , 2n+ 1} be the vertex labeling such that

φ1(xi) = 4

⌈
i

2

⌉
− 1 for 1 ≤ i ≤ n

and

φ1(y
j
i ) = 3

⌈
i− 1

2

⌉
+

⌈
i

2

⌉
+ j − 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ 2.

Since
wφ1(xixi+1) = φ1(xi) + φ1(xi+1) = 4i+ 2 for 1 ≤ i ≤ n− 1,

wφ1(y
1
i y
2
i ) = φ1(y

1
i ) + φ1(y

2
i ) = 6

⌈
i− 1

2

⌉
+ 2

⌈
i

2

⌉
+ 1 for1 ≤ i ≤ n and 1 ≤ j ≤ 2,

and

wφ1(x
1
i y
j
i ) = φ1(xi) + φ1(y

j
i ) = 3

⌈
i− 1

2

⌉
+ 5

⌈
i

2

⌉
+ j − 2 for1 ≤ i ≤ n and 1 ≤ j ≤ 2,

we see that the edge weights are distinct for all pairs of distinct edges. Thus, the vertex
labeling φ1 is an optimal edge irregular (2n+ 1)-labeling. This completes the proof.
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In Theorem 2, we determined the exact value of the edge irregularity strength of
Pn � Pm for n ≥ 2,m = 2. We have try to find edge irregularity strength of Pn � Pm
for n,m ≤ 3 but so far without success. So I conclude the following open problem.

OPEN PROBLEM. For the corona product Pn � Pm for n,m ≤ 3, determine the
exact value of edge irregularity strength.

In the following theorem, we determine the exact value of the edge irregularity
strength of Pn �mK1.

THEOREM 3. For any integer n ≥ 2 and 1 ≤ j ≤ m. Then es(Pn � mK1) =⌈
n(m+1)

2

⌉
.

PROOF. Let Pn �mK1 be a graph with the vertex set V (Pn �mK1) = {xi, yji :
1 ≤ i ≤ n, 1 ≤ j ≤ m} and the edge set

E(Pn �mK1) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {xiyji : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

By Theorem 1, it follows that es(Pn �mK1) ≥
⌈
n(m+1)

2

⌉
. For the converse, we define

a suitable edge irregular labeling

φ2 : V (Pn �mK1)→
{

1, 2, . . . ,

⌈
n(m+ 1)

2

⌉}
.

Case 1: Assume that n is even. We observe that

φ2(xi) =

{
i−1
2 (m+ 1) + 1, if i is odd,
i
2 (m+ 1), if i is even,

and

φ2(y
j
i ) =

{
i−1
2 (m+ 1) + j, if i is odd and 1 ≤ j ≤ m,
i−2
2 (m+ 1) + j + 1, if i is even and 1 ≤ j ≤ m.

Since

wφ2(xixi+1) = φ2(xi) + φ2(xi+1) = i(m+ 1) + 1 for 1 ≤ i ≤ n− 1,

and

wφ2(xiy
j
i ) = φ2(xi) + φ2(y

j
i ) = (i− 1)(m+ 1) + j + 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

we see that the edge weights are distinct for all pairs of distinct edges. Thus, the vertex
labeling φ2 is an optimal edge irregular d

n(m+1)
2 e-labeling.

Case 2: Assume that n is odd. We observe that

φ2(xi) =


i−1
2 (m+ 1) + 1, if 1 ≤ i ≤ n− 1 and i odd,
i
2 (m+ 1), if 1 ≤ i ≤ n− 1 and i even,⌈
n(m+1)

2

⌉
, if i = n,
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φ2(y
j
i ) =

{
i−1
2 (m+ 1) + j, if 1 ≤ i ≤ n− 1, i is odd, and 1 ≤ j ≤ m,
i−2
2 (m+ 1) + j + 1, if 1 ≤ i ≤ n− 1, i is even, and 1 ≤ j ≤ m,

φ2(y
j
n) ∈

{⌈
n(m+ 1)

2

⌉
,

⌈
n(m+ 1)

2

⌉
− 1, · · · ,

⌈
n(m+ 1)

2

⌉
−m

}∖{
n− 1

2
(m+ 1)

}
.

Since
wφ2(xixi+1) = φ2(xi) + φ2(xi+1) = i(m+ 1) + 1 for 1 ≤ i ≤ n− 2,

wφ2(xn−1xn) = φ2(xn−1) + φ2(xn)

=
n− 1

2
(m+ 1) +

⌈
n(m+ 1)

2

⌉
for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m,

wφ2(xiy
j
i ) = φ2(xi) + φ2(y

j
i ) = (i− 1)(m+ 1) + j + 1 for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m,

and

wφ2(xny
j
n) = φ2(xn) + φ2(y

j
n)

=

{⌈
n(m+ 1)

2

⌉
,

⌈
n(m+ 1)

2

⌉
− 1, . . . ,

⌈
n(m+ 1)

2

⌉
−m

}
∖{

n− 1

2
(m+ 1)}+

⌈
n(m+ 1)

2

⌉}
,

we see that the edge weights are distinct for all pairs of distinct edges. Thus, the vertex
labeling φ2 is an optimal edge irregular d

n(m+1)
2 e-labeling. This completes the proof.

Let Pn be a path of order n and Sm be a star of order m + 1 with z as a central
vertex. The Corona product Pn � Sm is a graph with the vertex set

V (Pn � Sm) = {xi, yji , zi : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and the edge set

E(Pn � Sm) = {xixi+1 : 1 ≤ i ≤ n− 1} ∪ {xiyji , xizi, ziy
j
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Clearly, |V (Pn � Sm| = n(m + 2) and |E(Pn � Sm)| = 2n(m + 1) − 1. The following
theorem gives the exact value of the edge irregularity strength for Pn � Sm.

THEOREM 4. For n ≥ 2 and m ≥ 3. Then

es(Pn � Sm) = nm+ n+ 1.

PROOF. According to Theorem 1, we have that es(Pn � Sm) ≥ nm+ n. Since the
edges xiy

j
i , xizi and ziy

j
i are parts of complete graph K3, therefore under every edge

irregular (nm+n)−labeling, the smallest edge weight has to be at least 3. Therefore, the
edges xixi+1 attain the smallest and largest edge weights 2 and 2(nm+n), respectively.
This is not possible under the every edge irregular (nm + n)−labeling. Therefore the
largest vertex label will be nm+ n+ 1. This implies that es(Pn � Sm) ≥ nm+ n+ 1.
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To prove the equality, it suffi ces to prove the existence of an optimal edge irregular
(nm+ n+ 1)−labeling.
Let φ3 : V (Pn � Sm)→ {1, 2, . . . , nm+ n+ 1} be the vertex labeling such that

φ3(xi) = 2

⌊
i

2

⌋
(m+ 1) + 1 for 1 ≤ i ≤ n,

φ3(y
j
i ) = m(i− 1) + i+ j for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

and

φ3(zi) = 2

⌊
i

2

⌋
(m+ 1)−m for 1 ≤ i ≤ n.

Since

wφ3(xixi+1) = φ3(xi) + φ3(xi+1) = 2i(m+ 1) + 2 for 1 ≤ i ≤ n− 1,

and since
wφ3(xizi) = φ3(xi) + φ3(zi) = 2i(m+ 1)−m+ 1,

wφ3(xiy
j
i ) = φ3(xi) + φ3(y

j
i ) = (m+ 1)

(
2

⌊
i

2

⌋
+ i

)
−m+ j + 1

and

wφ3(ziy
j
i ) = φ3(zi) + φ3(y

j
i ) = (m+ 1)

(
2

⌈
i

2

⌉
+ i

)
− 2m+ j,

for 1 ≤ i ≤ n and 1 ≤ j ≤ m, we see that the edge weights are distinct for all pairs of
distinct edges. Thus, the vertex labeling φ3 is an optimal edge irregular (nm+ n+ 1)-
labeling. This completes the proof.

3 Conclusion

In this paper, we discussed the new graph characteristic, the edge irregularity strength,
as a modification of the well-known irregularity strength, total edge irregularity strength
and total vertex irregularity strength (see [3, 7]). We obtained the precise values for
edge irregularity strength of corona graphs of path Pn with P2, Pn with K1 and Pn
with Sm. It seems to be a very challenging problem to find the exact value for the edge
irregularity strength of families of graphs.

Acknowledgment. The authors would like to thank the referee for his/her valu-
able comments.
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