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Abstract

In this article, the relative growth of an F-valued meromorphic function and
its derivative is studied and we obtain the bound for 7;(7;”(/) for an FE-valued
meromorphic function of finite order. We also extend the related results of S.
K. Singh and H. S. Gopalakrishna [4] to E-valued meromorphic function. Our
results are significant and much stronger than the result obtained by Z. Wu and

Y. Chen [5].

1 Introduction

In 1982, H. J. W. Ziegler [6] successively extended the classical Nevanlinna theory of
meromorphic functions to vector valued meromorphic functions in finite dimensional
spaces. Later in 1996, C. G. Hu and C. C. Yang [3] established the Nevanlinna’s theory
in an infinite dimensional Hilbert space. C. G. Hu [2] assumed, F is an infinite dimen-
sional Banach space with a Schauder basis {e;}, j = 1,2,... and was able to present
the statement of first and second fundamental theorem of Nevanlinna and Nevanlinna’s
deficiency relation in E. In 2006, C. G. Hu and Q. J. Hu [1] successively proved the
generalized Poisson-Jensen-Nevanlinna formula, first and second fundamental theorem
of Nevanlinna for E-valued meromorphic functions.

2 Basic Notions of Nevanlinna Theory in Infinite Di-
mensional Banach Space
Assume that F is a infinite dimensional complex Banach space with a Schauder ba-

sis {ej};il and C is a complex plane. Let D = C, = {z:|z|] <r}. An E-valued
meromorphic function f(z) in a domain D C C can be written as

f(z) = ij<z>ej = (f1(2), fo(2), .- fi(2), .. ),
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138 E-valued Meromorphic Function and Its Derivative

where each f;(z) is a complex-valued meromorphic functions in D. We now introduce
the generalized quantities of the Nevanlinna theory (see [1]): For any a € E U {co},
n(r,a, ) = n(r,a) denotes the number of a-points of f in |z| < r, counted with multi-
plicities and n(r, 00, f) = n(r, f) denote the number of poles of f in |z| < 7. Then we
have the counting function of finite or infinite a-points as

N(ra) = Nira /) =n(0.a)togr + [ B0,
N(T’f) = N(T,oo,f) = n(o,f)lOgT + /OT wdt

1 2w )
m(r, f) = m(r,00, f) = ﬂ/o log™ Hf(re“p)H do,

1 [ 1
m(r,a) =m(r,a, f) = /0 10g+ WCM’ (a # o0),

and

T(r, f) = m(r, f) + N(r, f),
where log" # = max {logz,0}. The volume function associated with E-valued mero-
morphic function f is given by

§‘A10g|f &) —alldo Adr, ack

and the curvature function is given by

1
Vira.f) =5 log

Voo.r) =6f) = [ 5o [ Alogl (@) do ndn

The order p of an F-valued meromorphic function f is defined by

. log T'(r, f)
p = limsup ————=
r—00 logr
and the lower order A of f is defined by
A = liminf 2870
r—00 logr

We now define the following deficiencies as in [2]: For any a € E U {oco}, the number

m(r,a) . V(r,a) + N(r,a)
ola) = ola, f) = fm il 7y = 1~ limsup =70

is called the deficiency of the point a, a point a with é(a) > 0 is called deficient.
The quantity

N(r,a) — N(r,a)
0a) = 6(a, f) = lim fnf ——7"—5
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is called the index of multiplicity of a, and

R e e
. V(r,a) + N(r,a)
1 — limsup .
r—-~00 T(r, f)
In particular, we have

§(0) = lrlgirolof Zf((:: JJ:)) =1- 171'1348»1;})) ]Z\f((::;)) since V(r,00) = 0,

6(o0) = lim inf N(r,f) = N(r, /)

o0 T(r, f) ’
. N(r, f)
O(0) =1 —limsu .
(00) =1 ~limsup 70 )
The quantity

da

G
dalf) =liminf 75

is called the Ricci Index of f(z).

The function f is called admissible if T‘?i:"’}) — 0 for a sequence r, — +00

THEOREM 1 ([1]).

(E-valued Nevanlinna’s first fundamental theorem) Let f(z)
be an E-valued meromorphic mapping in Cr. Then for 0 <r < R,a € E, f(z) # a

T(r,f) = V(r,a) + N(r,a) + m(r, a) +log ¢y (a)|| + €(r,a)

Here €(r, a) is a function such that |e(r,a)| < log™ ||la||+log2, €(r,0) = 0, and ¢,(a) € E
is the co-efficient of the first term in the Laurent series at the point a

THEOREM 2 ([1]). (E-valued Nevanlinna’s second fundamental theorem) Let f(z)
be a non-constant F-valued meromorphic mapping of compact projection in Cr and
al € EU{o0} (k=1,2,

,q) be ¢ > 3 distinct finite or infinite points. Then

S (ra¥) + G0 1) < TG, )

k=1

— Ny(r)+ S(r),

where Ny(r) = N(r,0, f') + 2N (r, f) — N(r, f') and

G(T,f)Z/O ;;LtAlog||f’(§)daAdr.

If R = 400, then S(r) satisfies S(r) = O {logT'(r, )} + O(logr) as r — 400 without
exception if f(z) has finite order and otherwise as r — +o00 outside a set J of exceptional
intervals of finite measure [, dr < 40c0. If 0 < R < 400, then

S(r) = O {log™ T(r, }—|—O{log 1T}
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holds as r — R without exception if f has finite order

= lim su log T(r, ) I f)
o log(L/R — 1)

and otherwise as r — R outside of a set J exceptional intervals such that [ 7 dﬁ <
400. In all cases, the exceptional set J is independent of the choice of the finite points
al*l € E and of their number.

THEOREM 3 ([2]). (E-valued Nevanlinna deficiency relation) Let f(z) be an E-
valued meromorphic function and admissible with the property of compact projection.
Then the set {a € E U {oco} : ©(a) > 0} is at most countable and summing over all such
points

> 6(a) +0(a)] + da < Y _O(a) + g < 2.

a

THEOREM 4 (Lemma 3.1(A) of [1]) Let f(z) be an E-valued meromorphic function
with the property of compact projection, and let

oo L e e L T i [ e
s = g [ tort Wi L [ Mo [Fre) e as

2
+plog™ 5 ~log llep |l -

Then
p+1

+Z’ITLT‘CL +N1()<2T(Taf)+sl(r)’

where Ny(r) = N(r,0, f') +2N(r, f) — N(r, f’) is the generalized counting function of
multiple points, ol = (a[l'/}, . a[y] ...)(p > 2) € E are distinct finite points, and

-3 =

3 Main Results

S. K. Singh and H. S. Gopalkrishna [4] proved the following result:

THEOREM 5. If f is a non-constant meromorphic function of order p then

hgggolf?(rf >Z®af

where r — oo without restriction if p is finite and r — oo outside an exceptional set of
finite measure if p = 40c0.
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In [5], Z. Wu and Y. Chen proved the following result.

THEOREM 6. Let f(z) be an admissible E-valued meromorphic function of com-
pact projection in C of finite order and assume ), 6(a) = 2. Then

i IO
= T, f)

=2 —§(00).

Now in this article, we obtain a THEOREM 5 for E-valued meromorphic function
f(2) in modified form and also extend the related results of S. K. Singh and H. S.
Gopalakrishna [4]. THEOREM 6 is also proved as a consequence of our main result.
We prove the following main results.

THEOREM 7. Let f(z) be an admissible and non-constant E-valued meromorphic
function of finite order p with compact projection then

L T(r f)
l;@(a, f)+ 06 < lminf 72

where r — +o00 without restriction if p is finite and r — 400 outside an exceptional
set of finite measure if p = +o00.

To prove THEOREM 7, we first prove the following Lemma, which plays an promi-
nent role in the proof of the THEOREM 7.

LEMMA 1. Let f(z) be a non-constant E-valued meromorphic function with the
property of compact projection in C;. and

all = (a[f],a[;],... al! ) (p>2)€eFE

) 7 i

are finite or infinite distinct points then

m(r, ¥, ) + N ( ;) LG f) < T(r, 1) + S(r, 1),
p=1
where
27
S(r, f) = %/0 log™ {F(re'®) || f"*)||} d¢ — log ||c, || + plog™ %p
and

P 1
F(z) = Z Hf(z) _ a[u]H'

v=1

PROOF. Following the proof of Lemma 3.1(A) in [1], we obtain the required result.
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PROOF OF THEOREM 7. Let {a[#}}, w=1,2,... 00 be an infinite sequence of
distinct elements of E, which includes every a € E for which O(a, f) > 0. Then

>0 (a4, ) = ¥ 60,1 0

acFE

We have

P

> i, f)+ G DT =N (r ) + 500,

Adding 2221 N (7“, a[“],f) to both sides, we obtain

Xp: T(r,a™ )+ G(r, f) < T(r,f')+zp:1v(r,aw,f)zv( f,)+5( f)

p=1 p=1

I
=
3
=
+
M~

N (T,a[“],f) — N (r, ;,) +S(r, f),

where Ny (r, %) is formed with the zeros of f’ which are not zeros of any of f — a

(L=1,2,...,p). Since Ny (7‘, %) > 0, we have
P P
S T a £y ST )+ YN (ral, ) = Gl )+ S(r, ).

p=1 p=1

By an E-valued Nevanlinna’s first fundamental theorem, we have

T(rya, f)=T(r,f) —V(r,a, f) + O(1).

Using this in the above equation, we obtain

f: [ V(r,a, f) + 001 )} <T(r, ) f: (na["],f) —G(r, f)+ S(r, f).
W; further obtain _
pT(r, f) < T(r zp:l[ (.0l £) + V(¥ £)] = GO, £) + S, ),
=
Then
p < i TSty TSSO s S
e SC

r—+00 T(Ta f)
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It follows that

[/t] _
p< I#Tfolof + E [ | = da(f).
p=1
So .
T f)
al] < ’
Z: ) +06(f) < liminf 2 2
Letting p — oo and using (1), we get
S 6 T )
< .
Ola. f) +9a(f) lrlgliﬂof T(r, f) @

a€lE

COROLLARY 1. Let f(2) be a admissible E-valued meromorphic function of finite
order p with the property of compact projection such that

> O, f)+éc=2  E=EU{cc}.

acE
Then
§ (1"
Am e T2 0.
(i)
- f) o <t ST <y R
= 1-06(af).

PROOF. Given that
> 0(a, f)+da =2,

a€E

we have
> 0(a, f) +O(c0, f) +dc = 2.

a€ElE

It follows that
> 6(a, f) + 6 =2 - O(c0, f).

aclE

Using (2), we write

liminf 200 > O(a,f)+6c=2-0(c0, f).

P T(r f) 2
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On the other hand, we know that

T(rf) = mlr )+ NG ) =l %)+ mir, )+ Ner )
< T(r,f)+N(r,f)+S(r, f)
" 7) N
o T, o
limsup 7575y < 1 lmsup 75 =
%0 T(r. 1)
. /,17
lirgilig) 0 ) <2—-0(o0, f).
Thus

T f)
AR T,y =27 O,

(i) Let a € EU{oo} and {al®} &k = 1,2,...00 be an infinite sequence of distinct
elements of EU{oco} which includes every b € EU{oo} such that b # a and (b, f) # 0.

Then
So(a™r)= 3 e =2-6@r. (3)
k=1

beE b#a

By E-valued Nevanlinna’s second fundamental theorem, we have

-1

Q

(]

(=270, +Go.f) < Y [V )+ N, )]

=

V’f‘a f +N(T’a f)]+s(raf)a

Il
— =

[

2

(=27 /) < Y [Vera™ 5+ N, p] + Ve )+ Na, f)]
k=1
7G(7’,f)+5(7‘,f),
B ! V(r,al®, f) + N(r,al¥! f)] [V(r,a,f)—l—ﬁ(r,cuf)]
-2t d) = 2 70 7) FTen
_G(rf) 50 ])
CT(r, ) T f)
- S ey V0l )+ N (ol £)]
(4-2) = ) limaup 0 f)
+ liminf [V(r,a, f) + N(r,a, f)] “timinf ) L su S(T,f)

r—too T(r,f) Pt T(r, f)  retes T )
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(4= 2 < timing V@D +Vma D] |

r—+00 T(T, f) Pt
— q—1
(4-2) 156 < %Elj{}f [V(r,a, J;)(:r jf\;(r, a, f)] t@-1)-%e (a[k]7f> :

Voo d) + Mool g (g, ).

0g — 1 < liminf -

77— 00 T(T, f) =1
So .
o [V(T, a, f) + N(Ta a, f)] S (K]
lim fnf T ) >3 0o, 1) +da -1

Let ¢ — oo and using (3), we get

. [V(ra f)+ N(ra, )] 6 (K
it T, f) =ILICR)

= 2-6(af)+d6—1=1-6(a,f)+c.
On the other hand, by the definition of ©(a, f), we have

i s [V(r,a, ) —l—W(r,a,f)}
7“*>+0£) T(’I", f)

=1- 6((1,, f)
Thus

1-0(a,f)+6g < liminf [V(r,a, )+ N(r,a, f)]

r—-400 T(r, f)
s [V(r,a,f) —l—W(na,f)] _
< limsup T(r, f) =1-0@J)

COROLLARY 2 Let f(z) be a admissible E-valued meromorphic function of finite
order p with the property of compact projection such that

> d(a, f)+ 66 =2.
acE

Then
o 10
r—-+4o00 T(r, f)

=2 —§(o0, f).

PROOF. We know that 6(a, f) < O(a, f), Va € EU {00} = F and

> 6(a, f)+0a <D O(a.f)+ 6 <2
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Given > d(a, f) + d¢ = 2. Then > O(a, f) + d¢ = 2. We observe that

> 6(a, f)+dc =Y _ O(a.f)+dc =2

Zé(a,f): Z@(avf)

a€E a€E

Then

So
0(a, f) = O(a, f) Va € E.

By using Corollary 1(i), we have

. T(r f) _
TEIEOO T(T,f) *27@(003.}0)*275(007]0)
% (. f')
) r f)
TEE]OO T(?“, f) =2- 5(007 f)
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