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Abstract

A closed-form formula for all derivatives of the real arctangent function is
presented. In addition a curious series expansion for the function is obtained and
one of its speci�c consequences is given.

1 Introduction

Constructing Maclaurin series expansion for the arctan function is easy by using an
integral. However, Taylor series expansion around an arbitrary point is not so simple.
It can be easily veri�ed, by induction, that the function arctanx possesses on R

derivatives of all orders. More precisely, there exists the sequence
�
Pn
�
n2N of polyno-

mials such that
dn

dxn
(arctanx) � Pn�1(x)

(1 + x2)n

and the degree of Pn(x) does not exceed n. Obviously, these polynomials satisfy the
recursion relation Pn(x) � (1 + x2)P 0n�1(x) � 2nxPn�1(x) with P0(x) � 1. To our
knowledge the closed form formula for Pn(x) is still unknown.
On the contrary, many di¤erent ways of how to �nd consecutive derivatives of arctan

at x = 0 are known, besides the method mentioned above. One of them, for example,
is the iterative method. Namely, the function y(x) � arctanx has the derivative
y0(x) � 1

1+x2 ; consequently, the identity (1 + x
2)y0(x) � 1 holds true. Hence, using

Leibniz rule for the n-th derivative we obtain

nX
k=0

�
n

k

�
(1 + x2)(k)

�
y(1)

�(n�k)
� 0;

that is
(1 + x2) � y(n+1)(x) + 2nx � y(n)(x) + n(n� 1) � y(n�1)(x) � 0; (1)

for x 2 R and n � 1. Thus, we get the recursion

y(n+1)(0) = �n(n� 1) � y(n�1)(0); n � 1;
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which results in

y(2k)(0) = 0 and y(2k+1)(0) = (�1)k(2k!); k � 0: (2)

To generate Taylor series expansion around an arbitrary x directly we need the
higher derivatives at this point. However, to �nd y(n)(x) from (1) it is not easy. In
[1] the authors used a brilliant idea how to calculate it. Unfortunately, they were
not very careful in their analysis and made some errors in their derivations and in
the �nal results as well. The fact that the Theorem 1 in [1] is not valid is evident
from the observation that the derivatives of arctan function of even orders are odd
functions1 . However, the functions Rn, Rn(x) being the right hand side of the Eq. (1)
in Theorem 1 [1], are even for every n. Figures 1a and 1b, using [3], show the graphs
of the derivatives arctan(6)(x) � 240x(�3 + 10x2 � 3x4)(1 + x2)�6 and arctan(8)(x) �
40320x(1� 7x2+7x4�x6)(1+x2)�8, together with the graphs of the functions R6(x)
and R8(x) (thick, dashed lines). We have the coincidence on R+, but not on R�.
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Figure 1a: The graphs of the
functions arctan(6)(x) and R6(x)
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Figure 1b: The graphs of the
functions arctan(8)(x) and R8(x)

Similarly, the sum, and also all partial sums, of the series in [1, Theorem 2, Eq.
(6)] are even functions, but arctan is an odd one. Figure 2 shows, using [3], the graph
of the function arctan together with the graph of 500-th partial sum S500(x) of the
series on the right of Eq. (6) [1] (thick, dashed line). The graphs coincide on R+, but
evidently not on R�.
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Figure 2: The graphs of arctan(x) and S500(x)

1generally: f odd (even) =) f 0 even (odd)
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We wish to improve the contribution [1] by giving the correct derivations and correct
results.

2 Higher Derivatives

We shall show how the authors�s idea can be used successfully. To this e¤ect we
reformulate the Theorem 1 in its correct version which di¤ers from the original one by
the inclusion of factor sgn�1(x) where sg(x) is de�ned as

sg(x) :=

�
�1, x < 0
1, x � 0 .

Hence sg(x) is di¤erent from zero everywhere, x � sg(x) � jxj, 1= sg(x) � sg(x) and
sg(�x) = � sg(x) for x 2 Rr f0g.

THEOREM 1. For x 2 R and n � 1 there holds the equality

dn

dxn
(arctanx) = sgn�1(�x) � (n� 1)!

(1 + x2)n=2
� sin

�
n � arcsin 1p

1 + x2

�
: (3)

PROOF. The equality (3) is obviously true for n = 1 and any real x since in this
case the right-hand side of the equation (3) becomes equal to

sg0(�x) � 0! � 1p
1 + x2

� 1p
1 + x2

� 1

1 + x2
:

Moreover, according to (2), the relation (3) is true also for x = 0 and n � 1 because
the right-hand side of the equation (3) then becomes equal to

sgn�1(0) � (n� 1)! � sin
�
n
�

2

�
=

(
(�1)(n�1)=2(n� 1)! , n odd

0 , n even .

Now we have to show that the identity (3) is valid also for x 2 Rr f0g and n > 1.
To do this we introduce the auxiliary function ' : R! R,

'(x) := arcsin
1p
1 + x2

2
�
0;
�

2

i
; (4)

being continuous and di¤erentiable on R� [ R+ with the derivative

'0(x) = � x

jxj �
1

1 + x2
=

(
1

1+x2 , x < 0

� 1
1+x2 , x > 0 .

(5)

Referring to (4) we have

sin
�
'(x)

�
� 1p

1 + x2
x 2 R: (6)
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Consequently, there holds the equality

'0(x) =

(
sin2

�
'(x)

�
, x < 0 � � � (*)

� sin2
�
'(x)

�
, x > 0 � � � (**) .

(7)

Remark. Contrary to the supposition that was probably made by the authors [1, p.
71], the function '(x) is not di¤erentiable at x = 0. As a matter of fact, at this point
it has �nite left and right derivatives which are, unfortunately, di¤erent. Indeed, using
L�Hôpital rule we have

' 0�(+)(0) = lim
h"0 (h#0)

1

h

�
arcsin

1p
1 + h2

� �
2

�
= � lim

h"0 (h#0)

h

jhj(1 + h2) = +1 (= �1) :

The graph of the function '(x) is depicted, using [3], in Figure 3.
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Figure 3: The graph of the function '(x)

Using (4) and (6), the equation (3) is transformed into the following equivalent
identity, for x 2 R,

dn

dxn
(arctanx) = sgn�1(�x) � (n� 1)! � sinn

�
'(x)

�
� sin

�
n sin

�
'(x)

��
: (8)

For x 2 R+ the relation (8) reduces to the equality

dn

xn
(arctanx) = (�1)n�1 � (n� 1)! � sinn

�
'(x)

�
� sin

�
n sin

�
'(x)

��
;

which, by induction, could be easily veri�ed [1, p. 71] using (7). Hence (3) holds true
for x > 0 and n � 1.
Consequently, for x 2 R� the relation (5) is also valid since in this case, substituting

x = �t with t = t(x) = jxj = �x, we have

dn

dxn
(arctanx) =

dn

dxn
arctan

�
� t(x)

�
=

�
dn

dtn
(� arctan t)

�
t=�x

�
�
dt

dx
(x)

�n
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= �
�
dn

dtn
�
arctan t

��
t=�x

� (�1)n

= � sgn�1(+x) � (n� 1)!
(1 + x2)n=2

� sin
�
n � arcsin 1p

1 + x2

�
� (�1)n

= sgn�1(�x) � (n� 1)!
(1 + x2)n=2

� sin
�
n � arcsin 1p

1 + x2

�
:

3 Curious Series Expansion

The function f given as complex curvilinear integral,

f(z) :=

Z z

0

d�

1 + �2
;

is analytic on the cut complex plane, i.e. in the domain D = C r fz 2 C jRez =
0; jImzj � 1g and there it has the complex derivative f 0(z) = 1=(1 + z2) [2, Th. 13.5,
p. 282]. Particularly, we have

f 0(x) =
1

1 + x2
= arctan0(x); x 2 R:

Hence, f(z) = arctan z for z 2 R; f is an analytic continuation of real function arctan.
Due to its analyticity, f can be expanded into Taylor�s series around every z0 2 D and
the obtained power series is convergent on every open disk centered at z0 and included
in D [2, Th. 16.7, p. 361].
For any x 2 R the number x+ (�x) = 0 belongs to the open disk jz � xj < jx� ij,

which is included in D. Therefore, on this disk f can be expanded into Taylor�s series;
consequently

0 = f
�
x+ (�x)

�
= f(x) +

1X
n=1

f (n)(x)

n!
(�x)n;

and we get the expansion

arctanx = �
1X
n=1

arctan(n)(x)

n!
(�x)n; (9)

true for every x 2 R.
Now, from (9) and (3) we obtain the following expansions

arctanx = �
1X
n=1

1

n!
� sgn�1(�x) � (n� 1)!

(1 + x2)n=2
� sin

�
n � arcsin 1p

1 + x2

�
� (�x)n

= � sg(�x)
1X
n=1

1

n
�
�
� x sg(�x)

�n
(1 + x2)n=2

� sin
�
n � arcsin 1p

1 + x2

�
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= sg(x)
1X
n=1

j � xjn
n(1 + x2)n=2

� sin
�
n � arcsin 1p

1 + x2

�
:

Thus, we arrive at the following theorem.

THEOREM 2. For any x 2 R there holds the equality

arctanx = sg(x) �
1X
n=1

1

n

�
x2

1 + x2

�n=2
sin

�
n � arcsin 1p

1 + x2

�
: (10)

In Figure 4 are depicted the graph of the function arctan and the graph (dashed
line) of the 100-th partial sum of the series in the right hand side of the equation (10).

20 10 10 20

1.5

1.0

0.5

0.5

1.0

1.5

Figure 4: The graph of arctan(x) and its series
approximation using the 100-partial sum in (10)

4 �-Series

The immediate consequence of Theorem 2 is the following result.

THEOREM 3. For ' 2 R such that 0 < j'j < �, and only for such ', there holds
the equality

�

2
� j'j = sg(') �

1X
n=1

1

n
(cos')n sin(n'): (11)

PROOF. A) 0 < ' < �
2 : In this case we consider the variable

x :=

q
sin�2(')� 1 > 0:

We obtain

' = arcsin
1p
1 + x2

and
x2

1 + x2
= 1� 1

1 + x2
= 1� sin2 ' = cos2 ' (12)

and
cot2 ' =

1

sin2(')
� 1 =

�
1 + x2

�
� 1 = x2:
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Consequently, since ' 2
�
0; �2

�
, it follows that tan

�
�
2 � '

�
= cot' = x. Hence,

�

2
� ' = arctanx: (13)

Under given suppositions, the relations (13), (10) and (12) con�rm the identity (11).

B) ��
2 < ' < 0 : Under this condition we estimate 0 < �' < �

2 . Consequently,

considering the preceding result, we have

�

2
� (�') =

1X
n=1

1

n

�
cos(�')

�n
sin(�n');

that is
�

2
� j'j = �

1X
n=1

1

n
(cos')n sin(n'):

Thus, the validity of the relation (11) is con�rmed once again.
C) �� < ' < ��

2 : In this case the estimate 0 < ' + � < �
2 holds. Therefore,

using the �rst result, we obtain

�

2
� ('+ �) =

1X
n=1

1

n

�
� cos'

�n
(�1)n sin(n');

that is
�

2
� j'j = �

1X
n=1

1

n
cosn(') sin(n')

and (11) is approved repeatedly.
D) �

2 < ' < � : Under this condition we have 0 < � � ' < �
2 . Thus, referring

to the �rst result, we have

�

2
� (� � ') =

1X
n=1

1

n

�
� cos'

�n
(�1)n+1 sin(n')

= �
1X
n=1

1

n

�
cos'

�n
sin(n')

that is
�

2
� ' =

1X
n=1

1

n
cosn(') sin(n')

and (11) is veri�ed also in this last case.
The function F , F (') := sg(')�

P1
n=1

1
n (cos')

n sin(n'), ful�ll the identities F ('+
2�) � F ('), for ' > 0, and F (' � 2�) � F ('), for ' < 0. Hence, the equality (11)
cannot be true for ' 2 Rr [��; �].
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Figure 5 illustrates the relation (11) by plotting, for ' 2
5S

k=0

�
(�3+k)�+0:013; (�2+

k)�� 0:013
�
, the graph of the function ' 7! �

2 � j'j (dashed line) and the graph of the
function ' 7! sg(') �

P100
n=1

1
n (cos')

n sin(n').

6 3 0 3 6 9

8

6

4

2

2

Figure 5: The graph of the function ' 7! �
2 � j'j (dashed

line) and its series approximation using the 100-th
partial sum
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