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Abstract

In this paper, a new formula for Adomian polynomials is introduced. Based on
this new formula, error analysis of Adomian series solution for a class of nonlinear
differential equations is discussed. Numerical experiment shows that Adomian
solution using this new formula converges faster.

1 Introduction

Recently, a great deal of interest has been focused on the convergence studies of the
series-solution obtained using Adomian Decomposition Method (ADM) for a wide vari-
ety of stochastic and deterministic problems [1-4]. Convergence of ADM when applied
to some classes of ordinary differential equations is discussed by many authors for ex-
ample [5,6]. For linear operator equations, Golberg [7] shows that ADM is equivalent
to the classical methods of successive approximation (Picard iteration). Lesnic [8] in-
vestigates the convergence of ADM when applied to time-dependent problems governed
by the heat, wave and beam equations for both forward and backward problems. It is
shown that for forward problems the convergence is faster than for backward problems.
An efficient technique based on Adomian method for computing the eigenelements of
fourth-order Sturm-Liouville boundary value problems is developed in [9]. Al-Khaled
and Allan [10] implemented ADM for variable-depth shallow water equations with
source term and the convergence is illustrated numerically. A comparative study be-
tween ADM and Sinc-Galerkian method for solving some population growth models is
performed by Al-Khaled [11] and between ADM and Runge Kutta method for solving
system of ordinary differential equations is performed by Shawagfeh et al. [12]. In
these comparisons, it is found that ADM offers a simple and more accurate approxi-
mate solution. Further important concrete applications of ADM to different types of
functional equations are discussed [13-17]. The contribution of the work reported in
this paper can be summarized in the following four points:

• Introducing a new formula for the Adomian polynomials (see section 3)
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• Introducing the sufficient condition that guarantees existence of a unique solution
to the problem (see Theorem 1)

• Based on the above two points, convergence of ADM when applied to the problem
is proved (see Theorem 2)

• The maximum absolute error of the Adomian truncated series solution is estimated
(see Theorem 3).

2 Standard ADM Applied to the Problem

Consider the kth order nonlinear ordinary differential equation

dk

dtk
y(t) + β(t)f(y) = x(t), (1)

subjected to suitable initial conditions

y(0) = c0,
dy(0)

dt
= c1,

d2y(0)
dt2

= c2, ...,
dk−1y(0)

dtk−1
= cn−1, (2)

where c0, c1, c2, ..., cn−1 are finite constants. In this work x(t) is assumed to be bounded
∀ t ∈ J = [0, T ] and |β(τ )| ≤ M ∀ 0 ≤ τ ≤ t ≤ T , M is a finite constant. The nonlinear
term f(y) is Lipschitzian with |f (y) − f (z)| ≤ L |y − z| and has Adomian polynomials
representation

f(y) =
∞∑

n=0

An(y0, y1, ..., yn), (3)

where the traditional formula of An is

An = (1/n!)(dn/dλn)

[
f

( ∞∑

i=0

λiyi

)]

λ=0

. (4)

Using equation (3) in equation (1) we get

£y (t) + β(t)
∞∑

n=0

An = x(t) (5)

where £ = dk

dtk . Applying £−1 on both sides of equation (5) to obtain

y (t) = θ (t) + £−1x (t) − £−1β(t)
∞∑

n=0

An (6)

where, θ(t) is the solution of £θ (t) = 0 satisfied by the given initial conditions and
£−1 (.) =

∫ t

0
...k−fold...

∫ t

0
(.) dt...dt. Application of ADM to (6) yields

y0 (t) = θ (t) + £−1x (t) , (7)
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and
yi (t) = −£−1β(τ )Ai−1, i ≥ 1. (8)

Finally, the Adomian series solution is

y(t) =
∞∑

i=0

yi(t). (9)

The Adomian’s polynomials are not unique and it can be generated from Taylor expan-
sion of f (y) about the first component y0 i.e. f (y) =

∑∞
n=0 An =

∑∞
n=0

[y−y0]
n

n! f (n) (y0)
[18, 19]. In [19] Adomian’s polynomials are arranged to have the form

A0 = f (y0) ,

A1 = y1f
(1) (y0) ,

A2 = y2f
(1) (y0) +

1
2!

y2
1f (2) (y0) ,

A3 = y3f
(1) (y0) + y1y2f

(2) (y0) +
1
3!

y3
1f (3) (y0) .

...

3 A New Formula to Adomian’s Polynomials

By rearranging the terms in the old polynomials yields a new definition of Adomian’s
polynomials as follow:

Ā0 = f (y0) ,

Ā1 = y1f
(1) (y0) +

1
2!

y2
1f (2) (y0) +

1
3!

y3
1f (3) (y0) + ...

Ā2 = y2f
(1) (y0) +

1
2!
(
y2
2 + 2y1y2

)
f (2) (y0) +

1
3!
(
3y2

1y2 + 3y1y
2
2 + y3

2

)
f (3) (y0) + ...

Ā3 = y3f
(1) (y0) +

1
2!
(
y2
3 + 2y1y3 + 2y2y3

)
f (2) (y0)

+
1
3!

(
y3
3 + 3y2

3 (y1 + y2) + 3y3 (y1 + y2)
2
)

f (3) (y0) + ...

...

Define the partial sum Sn =
∑n

i=0 yi(t), from the rearranged polynomials we can write

Ā0 = f (y0) = f (S0) ,

Ā0 + Ā1 = f (y0) + y1f
(1) (y0) +

1
2!

y2
1f (2) (y0) +

1
3!

y3
1f (3) (y0) + ...

= f (y0 + y1)
= f (S1) .
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Similarly, we can find

Ā0 + Ā1 + Ā2 = f (y0 + y1 + y2) = f (S2) .

By induction
n∑

i=0

Āi(y0, y1, ..., yi) = f (Sn) ,

from which we have

Ān = f (Sn) −
n−1∑

i=0

Āi. (10)

Which is the formula.
For example, if f (y) = y3 the first four polynomials using formulas (4) and (10)

are computed to be:
Using formula (4):

A0 = y3
0,

A1 = 3y2
0 y1,

A2 = 3y0 y2
1 + 3y2

0 y2,

A3 = y3
1 + 6y0 y1 y2 + 3y2

0 y3,

A4 = 3y2
1 y2 + 3y0 y2

2 + 6y0 y1 y3 + 3y2
0 y4.

Using formula (10):

Ā0 = y3
0,

Ā1 = 3y2
0y1 + 3y0y

2
1 + y3

1 ,

Ā2 = 3y2
0y2 + 3y0y

2
2 + 3y2

1y2 + 3y1y
2
2 + 6y0y1y2 + y3

2,

Ā3 = 3y2
0y3 +3y0y

2
3 +3y2

1y3 +3y1y
2
3 +3y2

2y3 +3y2y
2
3 +6y0y1y3 +6y0y2y3 +6y1y2y3 +y3

3 ,

Ā4 = 3y2
0y4 + 3y0y

2
4 + 3y2

1y4 + 3y1y
2
4 + 3y2

2y4 + 3y2y
2
4 + 3y2

3y4 + 3y3y
2
4

+6y0y1y4 + 6y0y2y4 + 6y0y3y4 + 6y1y2y4 + 6y1y3y4 + 6y2y3y4 + y3
4.

Clearly, the first four polynomials computed using the suggested formula (10) include
the first four polynomials computed using formula (4) in addition to other terms that
should appear in A5, A6, A7, ...using formula (4). Thus, the solution that obtained
using formula (10) enforces many terms to the calculation processes earlier, yielding a
faster convergence.
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4 Convergence Analysis

In this section the sufficient condition that guarantees existence of a unique solution is
introduced in Theorem 1, convergence of the series solution (9) is proved in Theorem
2 and finally the maximum absolute error of the truncated series (9) is estimated in
Theorem 3.

THEOREM 1. Problem (1)-(2) has a unique solution whenever 0 < α < 1, where,
α = LMTk

k!

PROOF. Denoting E = (C[J ], ‖.‖) the Banach space of all continuous functions
on J with the norm ‖y(t))‖ = maxt∈J |y(t)| . Define a mapping F : E → E where

Fy (t) = θ (t) + £−1x (t) − £−1β(τ )f (y). Let, y and
∗
y∈ E we have

∥∥∥Fy − F
∗
y
∥∥∥ = max

t∈J

∣∣∣£−1β(τ )
[
f(y) − f(

∗
y)
]∣∣∣

≤ max
t∈J

£−1 |β(τ )|
∣∣∣f(y) − f(

∗
y)
∣∣∣

≤ LM max
t∈J

∣∣∣y−
∗
y
∣∣∣
∫ t

0

...k−fold...

∫ t

0

dt...dt

≤ LMT k

k!
max
t∈J

∣∣∣y−
∗
y
∣∣∣

≤ α
∥∥∥y−

∗
y
∥∥∥ .

Under the condition 0 < α < 1 the mapping F is contraction therefore, by the Banach
fixed-point theorem for contraction, there exist a unique solution to problem (1)-(2)
and this completes the proof.

THEOREM 2. The series solution (9) of problem (1)-(2) using ADM converges
whenever 0 < α < 1 and |y1| < ∞.

PROOF. Let, Sn and Sm be arbitrary partial sums with n ≥ m. We are going to
prove that {Sn} is a Cauchy sequence in Banach space E

‖Sn − Sm‖ = max
t∈J

|Sn − Sm|

= max
t∈J

∣∣∣∣∣
n∑

i=m+1

yi(t)

∣∣∣∣∣

= max
t∈J

∣∣∣∣∣
n∑

i=m+1

−£−1β(τ )Āi−1

∣∣∣∣∣

= max
t∈J

∣∣∣∣∣£
−1β(τ )

n−1∑

i=m

Āi dτ

∣∣∣∣∣ .
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From (10) we have
∑n−1

i=m Āi = f(Sn−1) − f(Sm−1) so

‖Sn − Sm‖ = max
t∈J

∣∣£−1β(τ ) [f(Sn−1) − f(Sm−1)]
∣∣

≤ max
t∈J

£−1 |β(τ )| |f(Sn−1) − f(Sm−1)|

≤ LMT k

k!
‖Sn−1 − Sm−1‖

≤ α ‖Sn−1 − Sm−1‖ .

Let, n = m + 1 then

‖Sm+1 − Sm‖ ≤ α‖Sm − Sm−1‖ ≤ α2 ‖Sm−1 − Sm−2‖ ≤ ... ≤ αm ‖S1 − S0‖ .

From the triangle inequality

‖Sn − Sm‖ ≤ ‖Sm+1 − Sm‖ + ‖Sm+2 − Sm+1‖ + ... + ‖Sn − Sn−1‖
≤

[
αm + αm+1 + ... + αn−1

]
‖S1 − S0‖

≤ αm
[
1 + α + α2 + ... + αn−m−1

]
‖S1 − S0‖

≤ αm

(
1 − αn−m

1 − α

)
‖y1 (t)‖ .

Since 0 < α < 1 so, (1 − αn−m) < 1 then we have

‖Sn − Sm‖ ≤ αm

1 − α
max
t∈J

|y1 (t)| . (11)

But |y1| < ∞ (since x (t) is bounded) so, as m → ∞ then ‖Sn − Sm‖ → 0. We conclude
that {Sn} is a Cauchy sequence in E so, the series

∑∞
n=0 yn(t) converges and the proof

is complete.
THEOREM 3. The maximum absolute truncation error of the series solution (9) to

problem (1)-(2) is estimated to be: maxt∈J |y(t) −
∑m

i=0 yi(t)| ≤ αm

1−α maxt∈J |y1 (t)| .
PROOF. From (11) in Theorem 2 we have

‖Sn − Sm‖ ≤ αm

1 − α
max
t∈J

|y1 (t)| .

As n → ∞ then Sn → y(t) so we have

‖y (t) − Sm‖ ≤ αm

1 − α
max
t∈J

|y1 (t)| ,

and the maximum absolute truncation error in the interval J is estimated to be

max
t∈J

∣∣∣∣∣y(t) −
m∑

i=0

yi(t)

∣∣∣∣∣ ≤ max
t∈J

αm

1 − α
|y1 (t)| . (12)

This completes the proof.
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4.1 A Numerical Experiment

Consider the nonlinear ordinary differential equation

d2y

dt2
+ e−2ty3 = 2et,

subject to the initial conditions,

y(0) = y′(0) = 1,

which has exact solution y(t) = et. Using MATHEMATICA, this example is solved
using new and old polynomials. A comparative study, in table 1 using 7 terms approx-
imation, shows that the solution using the new polynomials (10) converges faster than
the solution using the old polynomials (4).

Table (1): Relative Absolute Error (RAE)

t RAE using old polynomials RAE using new polynomials

0.1 8.18149× 10−14 2.59738× 10−16

0.2 6.69176× 10−12 7.07935× 10−15

0.3 1.71173× 10−10 5.14516× 10−14

0.4 9.88231× 10−8 9.81922× 10−13

0.5 4.60176× 10−6 1.01016× 10−11

0.6 0.0000195279 9.91096× 10−9

0.7 0.0000877121 1.06216× 10−8

0.8 0.000210942 6.63176× 10−7

0.9 0.000785103 3.69176× 10−6

1 0.00131653 0.0000110157

5 Conclusion

A new formula for Adomian polynomials is introduced. Based on this new formula, the
contraction mapping principles can be employed successfully to estimate the maximum
absolute truncated error. Numerical experiment shows that the Adomian series solution
using this new formula converges faster.
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