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Abstract

Let A and B be complex matrices of same dimension. Given their eigen-
values and singular values, we survey and further develop simple inequalities for
eigenvalues and singular values of A + B, AB, and A ◦ B. Here ◦ denotes the
Hadamard product. As corollaries, we find inequalities for additive and multi-
plicative spreads of these matrices.

1 Introduction

LetA be a complex n×nmatrix (assume n ≥ 2 throughout) with eigenvalues λ1, ...,λn,
denoted also by λi(A) = λi. Order them λ1 ≥ ... ≥ λn if they are real. In the
general case, order them in absolute value: |λ(1)| ≥ ... ≥ |λ(n)|, and denote also
|λ(i)(A)| = |λ(i)|. We define the additive spread of A by

ads A = max
i,j

|λi − λj |

and multiplicative spread (assuming the λi’s nonzero) by

mls A = max
i,j

���λi
λj

���.
Several inequalities for the additive spread are known (see [9] and its references). The
multiplicative spread of a Hermitian positive definite matrix, the Wielandt ratio, is
widely studied (see [1] and its references).
Let σ1 ≥ ... ≥ σn(≥ 0) be the singular values of A, denoted also by σi(A) = σi. If

A is nonsingular (i.e., if σn > 0) we define its (spectral) condition number by

cndA = (mlsA∗A)
1
2 =

σ1
σn
.

It measures the numerical instability of A (see e.g. [4]).
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Let 1 ≤ i < j ≤ n.
If the eigenvalues of A are real, we define the additive mid-spread of A by

adsijA = λi − λj

and the multiplicative mid-spread by

mlsijA =
λi
λj

(λj > 0).

Assuming nothing about eigenvalues, we define the absolute multiplicative spread of A
by

MlsA =
|λ(1)|
|λ(n)| (λ(n) 9= 0)

and the absolute multiplicative mid-spread by

MlsijA =
|λ(i)|
|λ(j)| (λ(j) 9= 0).

We do not find the absolute additive spread interesting. Finally, we define the mid-
condition number of A by

cndijA =
σi
σj

(σj > 0)

(although they may be bad measures of condition).
There are many well-known inequalities for eigenvalues and singular values ofA+B,

AB, and A ◦B, when the eigenvalues and singular values of A and B are given, see
e.g. [2], [3], [5], [6], [7], [8], [10], [11], [12]. Here ◦ denotes the Hadamard product. We
will survey and further develop simple inequalities. We are particularly interested in
their analogies. As corollaries, we will find inequalities for spreads of A+B, AB, and
A ◦B, when the spreads of A and B are given.
There is a deep theory behind the eigenvalues of the sum of Hermitian matrices and

the singular values of the product of square matrices (see e.g. [3] and its references),
but our approach is elementary.

2 Eigenvalues of A+B

If A and B are Hermitian, then we can both underestimate and overestimate eigenval-
ues of A+B by using eigenvalues of A and B. Hence we can overestimate spreads of
A+B by using spreads of A and B.

THEOREM 1 (Weyl, see e.g. [2], Theorem III.2.1; [6], Theorem 4.3.7). Let A and
B be Hermitian n× n matrices. If 1 ≤ k ≤ i ≤ n and 1 ≤ l ≤ n− i+ 1, then

λi+l−1(A) + λn−l+1(B) ≤ λi(A+B) ≤ λi−k+1(A) + λk(B). (1)

In particular,

λi(A) + λn(B) ≤ λi(A+B) ≤ λi(A) + λ1(B) (2)
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and further

λn(A) + λn(B) ≤ λn(A+B),

λ1(A+B) ≤ λ1(A) + λ1(B).

Lidskii’s sum inequalities and their further developments (see e.g. [2], [3]) general-
ize (2).

COROLLARY 2. Let A and B be Hermitian n× n matrices. If 1 ≤ k ≤ i < j ≤ n
and 1 ≤ l ≤ n− j + 1, then

adsij(A+B) ≤ adsi−k+1,j+l−1A+ adsk,n−l+1B. (3)

In particular,

adsij(A+B) ≤ adsijA+ adsB
and further

ads(A+B) ≤ adsA+ adsB. (4)

PROOF. In
adsij(A+B) = λi(A+B)− λj(A+B),

apply the second inequality of (1) to the first term and the first inequality to the second.
Then (3) follows.

COROLLARY 3. Let A and B be Hermitian n× n matrices and let i, j, k, l satisfy
the conditions of Corollary 2. If λj+l−1(A) > 0 and λn−l+1(B) > 0, then

mlsij(A+B) < mlsi−k+1,j+l−1A+mlsk,n−l+1B. (5)

In particular, if B is positive definite, then

mlsij(A+B) < mlsijA+mlsB,

and if also A is positive definite, then

mls(A+B) < mlsA+mlsB. (6)

PROOF. Denoting αp = λp(A), βp = λp(B) (1 ≤ p ≤ n), r = i−k+1, s = j+ l−1,
t = n− l + 1, we have by (1)

mlsij(A+B) =
λi(A+B)

λj(A+B)
≤ αr + βk

αs + βt
.

Since
αr
αs
+

βk
βt
− αr + βk

αs + βt
=

α2sβk + αrβ
2
t

αsβt(αs + βt)
> 0,

inequality (5) follows.
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To study the additive spread of the sum of non-Hermitian matrices, we recall

THEOREM 4 ([9], Theorem 2 and Lemma 2). If A is a square matrix, then

adsA ≤ max
|z|=1

ads
zA+ z̄A∗

2
. (7)

If A is normal, then

adsA = max
|z|=1

ads
zA+ z̄A∗

2
. (8)

According to Corollary 2, inequality (4) holds for Hermitian matrices. We extend
it to normal matrices.

THEOREM 5. If A and B are square matrices of same dimension, then

ads(A+B) ≤ max
|z|=1

ads
zA+ z̄A∗

2
+ max
|z|=1

ads
zB+ z̄B∗

2
. (9)

If A and B are normal, then

ads(A+B) ≤ adsA+ adsB. (10)

PROOF. By (7),

ads(A+B) ≤ max
|z|=1

ads
z(A+B) + z̄(A+B)

∗

2
.

Let z0 be the maximizer. Recalling (4), we have

ads
z0(A+B) + z̄0(A+B)

∗

2
= ads

�z0A+ z̄0A∗
2

+
z0B+ z̄0B

∗

2

�
≤ ads

z0A+ z̄0A
∗

2
+ ads

z0B+ z̄0B
∗

2

≤ max
|z|=1

ads
zA+ z̄A∗

2
+ max
|z|=1

ads
zB+ z̄B∗

2
,

which proves (9). Now (8) implies (10).

It is not sensible to ask whether (6) can be generalized for normal matrices, since
it requires that the eigenvalues are real and positive. The counterexample

A =

�
2 3
0 2

�
, B =

�
2 0
3 2

�
, A+B =

�
4 3
3 4

�
shows that (6) cannot be generalized for matrices with real and positive eigenvalues.
We have mls(A+B) = 7 but mlsA+mlsB = 2.
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3 Singular Values of A+B

The following theorem is analogous to the second parts of (1) and (2).

THEOREM 6 (Fan, see e.g. [2], Problem III.6.5; [7], Theorem 3.3.16; [8], p. 243).
Let A and B be n× n matrices. If 1 ≤ k ≤ i ≤ n, then

σi(A+B) ≤ σi−k+1(A) + σk(B). (11)

In particular,

σi(A+B) ≤ σi(A) + σ1(B)

and further

σ1(A+B) ≤ σ1(A) + σ1(B).

The first parts of (1) and (2) do not have analogies for singular values. In other
words: For 1 ≤ l ≤ n− i+ 1,

σi+l−1(A) + σn−l+1(B) ≤ σi(A+B)

is not valid in general. A counterexample is A = I, B = −I. For i = l = 1, this
inequality ”follows” from the wrong inequality 9.G.1.e (also 9.G.4.b) of [8].
There does not seem to be any good way to underestimate singular values of the

sum by using singular values of the summands. Certainly (11) implies

|σi+l−1(A)− σl(B)| ≤ σi(A+B),

but this appears to be ineffective to our purpose.
Therefore we cannot apply our methods to the ”additive singular value spread”

σ1(A)− σn(A).

4 Eigenvalues of AB

If A and B are Hermitian and nonnegative definite, then we can both underestimate
and overestimate eigenvalues of AB by using eigenvalues of A and B. Hence we can
overestimate multiplicative spreads ofAB by using those ofA and B. (The eigenvalues
of AB are real, since

λi(AB) = λi(A
1
2A

1
2B) = λi(A

1
2BA

1
2 ),

and A
1
2BA

1
2 is Hermitian. The second equality follows from the fact that if C and D

are square matrices of same order, then CD and DC have the same spectrum.)
Analogously to Theorem 1, we have

THEOREM 7. Let A and B be Hermitian nonnegative definite n× n matrices. If
1 ≤ k ≤ i ≤ n and 1 ≤ l ≤ n− i+ 1, then

λi+l−1(A)λn−l+1(B) ≤ λi(AB) ≤ λi−k+1(A)λk(B). (12)
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In particular,

λi(A)λn(B) ≤ λi(AB) ≤ λi(A)λ1(B) (13)

and further

λn(A)λn(B) ≤ λn(AB), λ1(AB) ≤ λ1(A)λ1(B).

Lidskii’s product inequalities and their further developments (see e.g. [2], [3], [8],
[11], [12]) generalize (13).

PROOF (cf. the proof of Wang and Zhang [12], Theorem 2). The second part of
(12) is an easy consequence of the second part of (15). Hence, assuming B positive
definite,

λi+l−1(A) = λi+l−1(ABB−1) ≤ λi+l−1−l+1(AB)λl(B−1) = λi(AB)λ
−1
n−l+1(B),

and the first part of (12) follows. If B is singular, then continuity argument applies.

COROLLARY 8. Let A and B be Hermitian nonnegative definite n× n matrices.
If 1 ≤ k ≤ i < j ≤ n, 1 ≤ l ≤ n− j + 1, λj+l−1(A) > 0, and λn−l+1(B) > 0, then

mlsijAB ≤ mlsi−k+1,j+l−1Amlsk,n−l+1B. (14)

In particular, if B is positive definite, then

mlsijAB ≤ mlsijAmlsB,
and if also A is positive definite, then

mlsAB ≤ mlsAmlsB.

PROOF. By (12),

mlsijAB =
λi(AB)

λj(AB)
≤ λi−k+1(A)λk(B)

λj+l−1(A)λn−l+1(B)
= mlsi−k+1,j+l−1Amlsk,n−l+1B,

and (14) is proved.

5 Singular Values of AB

Analogously to Theorem 7, we have

THEOREM 9. LetA andB be n×nmatrices. If 1 ≤ k ≤ i ≤ n and 1 ≤ l ≤ n−i+1,
then

σi+l−1(A)σn−l+1(B) ≤ σi(AB) ≤ σi−k+1(A)σk(B). (15)

In particular,

σi(A)σn(B) ≤ σi(AB) ≤ σi(A)σ1(B) (16)
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and further

σn(A)σn(B) ≤ σn(AB), σ1(AB) ≤ σ1(A)σ1(B). (17)

Gelfand’s and Naimark’s inequalities and their further developments (see e.g. [2],
[3], [8], [10], [11], [12]) generalize (16).
PROOF. For the second part of (15), see e.g. [7], Theorem 3.3.16. For the first

part, proceed as in the proof of the first part of (12).

COROLLARY 10. Let A and B be n × n matrices. If 1 ≤ k ≤ i < j ≤ n,
1 ≤ l ≤ n− j + 1, σj+l−1(A) > 0, and σn−l+1(B) > 0, then

cndijAB ≤ cndi−k+1,j+l−1A cndk,n−l+1B.

In particular, if B is nonsingular, then

cndijAB ≤ cndijA cndB,

and if also A is nonsingular, then

cndAB ≤ cndA cndB.

6 Eigenvalues of A ◦B
We have the following

THEOREM 11 (see e.g. [5], Theorem 3.1; [7], Theorem 5.3.4). If A and B = (bjk)
are Hermitian nonnegative definite n× n matrices, then

λn(A)λn(B) ≤ λn(A)min
k
bkk ≤ λn(A ◦B)

and
λ1(A ◦B) ≤ λ1(A)max

k
bkk ≤ λ1(A)λ1(B).

COROLLARY 12. If A and B are Hermitian positive definite matrices, then

mls (A ◦B) ≤ mlsA max
k,l

bkk
bll
≤ mlsAmlsB.

Sharper inequalities

λi(A)λn(B) ≤ λi(A ◦B) ≤ λi(A)λ1(B),

cf. (13), are not generally valid for Hermitian nonnegative definite n×n matrices. For
counterexample, let

A =

 1 1 1
1 1 1
1 1 1

 , B =

 1 0 0
0 1 0
0 0 1

 = A ◦B.
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Then λ1(A)λ3(B) = 3 but λ1(A ◦B) = 1, and λ2(A ◦B) = 1 but λ2(A)λ1(B) = 0.
But can we sharpen (13) to

λn(A)λn(B) ≤ λn(A)min
k
bkk ≤ λn(AB) (18)

and

λ1(AB) ≤ λ1(A)max
k
bkk ≤ λ1(A)λ1(B) (19)

for Hermitian nonnegative definite n× n matrices?
The first inequality of (18) and the second of (19) are elementary facts. To disprove

the second inequality of (18), let

A =

�
1 0
0 1

�
, B =

�
4 2
2 1

�
.

Then λ2(AB) = 0 but λ2(A)mink bkk = 1. To disprove the first inequality of (19), let

A =

 26 16 −11
16 25 12
−11 12 62

 , B =

 32 −13 −38
−13 58 −2
−38 −2 91

 .
Then λ1(AB) = 7039 but λ1(A)maxk bkk = 66.64 · 91 = 6064.

7 Singular Values of A ◦B
For singular values, we again have some analogy.

THEOREM 13 (see e.g. [5], Theorem 3.1; [7], Theorem 5.5.18). Let A and B be

n× n matrices. If P = (pjk) = (BB∗) 12 and Q = (qjk) = (B
∗B)

1
2 , then

σ1(A ◦B) ≤ σ1(A)
�
max
k
pkkmax

k
qkk)

1
2 ≤ σ1(A)σ1(B).

In particular, if B = (bjk) is Hermitian nonnegative definite, then

σ1(A ◦B) ≤ σ1(A)max
k
bkk ≤ σ1(A)σ1(B). (20)

The inequality
σn(A)σn(B) ≤ σn(A ◦B)

is not generally valid. A counterexample is

A =

�
1 0
0 1

�
, B =

�
0 1
1 0

�
.

It seems that there is no good way to underestimate σi(A◦B) by using singular values
of A and B. Therefore we cannot find bounds for cndij(A ◦ B) by using condition
numbers of A and B.
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8 Eigenvalues of AB, Continued

Finally, we consider absolute multiplicative spreads.
It seems that the |λ(i)(AB)|’s cannot be effectively grasped in general. Since the

singular values of a normal matrix are absolute values of eigenvalues, we have by
Corollary 10 the following

COROLLARY 14. Let A and B be normal n × n matrices such that also AB is
normal. If 1 ≤ k ≤ i < j ≤ n, 1 ≤ l ≤ n− j + 1, λj+l−1(A) 9= 0, and λn−l+1(B) 9= 0,
then

MlsijAB ≤Mlsi−k+1,j+l−1AMlsk,n−l+1B.
In particular, if B is nonsingular, then

MlsijAB ≤MlsijAMlsB,

and if also A is nonsingular, then

MlsAB ≤MlsAMlsB.

If A and B commute, then analogy to Theorem 7 holds. Namely, applying Ya-
mamoto’s theorem

lim
m→∞σi(A

m)
1
m = |λ(i)(A)| (1 ≤ i ≤ n)

(see e.g. [7], Theorem 3.3.21) and Theorem 9, we have

THEOREM 15 ([7], Exercise 3.3.30). Let A and B be commuting n× n matrices.
If 1 ≤ k ≤ i ≤ n and 1 ≤ l ≤ n− i+ 1, then

|λ(i+l−1)(A)||λ(n−l+1)(B)| ≤ |λ(i)(AB)| ≤ |λ(i−k+1)(A)||λ(k)(B)|. (21)

In particular,

|λ(i)(A)||λ(n)(B)| ≤ |λ(i)(AB)| ≤ |λ(i)(A)||λ(1)(B)|

and further

|λ(n)(A)||λ(n)(B)| ≤ |λ(n)(AB)|, |λ(1)(AB)| ≤ |λ(1)(A)||λ(1)(B)|.

In [7], A and B are assumed to be nonsingular in the first part of (21). We prove it
in the singular case. Assume that A or B is (or both are) singular. Then there exists
�0 > 0 such that A = A+�I and B = B+�I are nonsingular for all � with 0 < � < �0.
Because A and B commute, also A and B commute. Applying the first part of (21)
to A and B , the claim follows by continuity argument.

COROLLARY 16. LetA andB be commuting n×nmatrices. If 1 ≤ k ≤ i < j ≤ n,
1 ≤ l ≤ n− j + 1, λj+l−1(A) 9= 0, and λn−l+1(B) 9= 0, then

MlsijAB ≤Mlsi−k+1,j+l−1AMlsk,n−l+1B.
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In particular, if B is nonsingular, then

MlsijAB ≤MlsijAMlsB,
and if also A is nonsingular, then

MlsAB ≤MlsAMlsB.
Let A and B be normal matrices. Then AB is not necessarily normal, but it is

normal if A and B commute. However, AB can be normal even if A and B do not
commute ([6], Problem 2.5.9). All this motivates us to pose the following

CONJECTURE. Theorem 15 remains valid if, instead of commutativity, normality
of A and B (but not necessarily AB) is assumed.
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