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Abstract

The main purpose of this paper is to prove that every analytic dynamical
system on the complex plane has no limit cycle. Also we give analogues of the
Denjoy-Wolff fixed point theorem of complex iteration, Schwarz Lemma of com-
plex analyis and contraction principle in our settings.

The well known Poincare-Bendixson Theorem states that in a 2-dimensional smooth
dynamical system, every bounded solution converges either to a limit cycle or to an
equilibrium or the solution itself is periodic. The main purpose of this paper is to prove
that an analytic system: ż = f(z), where f is analytic on the complex plane C, does
not have any limit cycle. Thus a bounded solution converges to an equilibrium or itself
is periodic. We also give analogues of the Denjoy-Wolff fixed point theorem, Schwarz
Lemma and contraction principle in the context of our analytic dynamical systems.

Consider the following system
ż = f(z) (1)

where f is analytic on the complex plane C.

THEOREM 1. The system (1) does not have a limit cycle.

PROOF. Suppose to the contrary that the system (1) has a limit cycle γ : [0, T ]→ C
with γ(0) = γ(T ). Let Ω be the region bounded by γ. Since Ω is bounded, there exists
a semiflow: {Φt |t ≥ 0} where Φt : Ω → Ω is 1-1 and analytic, such that for each
initial point z ∈ Ω, the corresponding solution can be represented as z(t) = Φt(z) for
all t ≥ 0 [2, p.283]. Choose n ∈ N (N is the set of positive integers) and let h = T/n.
Then Φh is continuous on Ω̄ and analytic on Ω. Thus ∀z ∈ ∂Ω, Φh(z) ∈ ∂Ω, and
Φnh(z) = ΦT (z) = z. Let g(z) = Φnh(z) − z. Then g is continuous on Ω̄ and analytic
on Ω. Since |g(z)| = 0 for all z ∈ ∂Ω, by the Maximum module principle [3, p.134],
g(z) = 0 for all z ∈ Ω. Hence Φnh(z) = z for all z ∈ Ω. Thus we have shown that
∀z ∈ Ω, Φnh(z) = ΦT (z) = z. So all solutions z(t) = Φt(z) in Ω are periodic. Therefore
γ is not a limit cycle, which is a contradiction. The proof is complete.

COROLLARY 1. Let γ be a periodic solution for the system (1) such that γ(0) =
γ(T ) and Ω the domain bounded by γ. Then (i) there exists a unique equilibrium ξ ∈ Ω
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such that f(ξ) = 0 and Re(f 3(ξ)) = 0, and (ii) for each initial point z ∈ Ω\{ξ}, the
corresponding solution z(t) is periodic, z(T ) = z and encircles ξ.

PROOF. Since for every z ∈ γ, f(z) 9= 0 and lies in the tangent line of γ at z,
the number of zeros of f in Ω counted with their multiplicities is equal to the winding
number W (f, r) of f with respect to γ, which satisfies [3,P.115]

1 =W (f, r) =
1

2πi γ

f 3(z)
f(z)

dz. (2)

By the same argument in the proof of Theorem 1, we may prove that for each
initial point z ∈ Ω\{ξ}, the corresponding solution z(t) satisfies z(T ) = z where T is
the period of γ. Suppose the unique equilibrium ξ satisfies Re(f 3(ξ)) < 0. Then by
Lyapunov’s stability Theorem [4], there exists Ns(ξ), a neighborhood of ξ, such that
∀z ∈ Ns(ξ), z(t) → ξ as t → ∞. So ξ is a local attractor. Hence every solution
near ξ is certainly not periodic which contradicts the fact shown above. Similarly, if
Re(f 3(ξ)) > 0, then there exists Nw(ξ), a neighborhood of ξ, such that ∀z ∈ Nw(ξ),
∃t1 > 0 such that Φt1 /∈ Nw(ξ). Thus from the above cases we have shown that every
solution near ξ is certainly not periodic which contradicts the fact shown above. So we
have Re(f 3(ξ)) = 0.
Next, let γ1 be an arbitrary periodic solution in Ω. By the same argument as above,

there exists ξ1 ∈ Ω1 (the domain bounded by γ1) such that f(ξ1) = 0. By (2), ξ1 = ξ.
In view of the facts just shown, we have proved that every solution z(t) in Ω with initial
point z /∈ ξ is periodic and encircles ξ. The proof is complete.

The following is an analogue of Denjoy-Wolff fixed point Theorem for (1).

THEOREM 2. Suppose the bounded and simply connected domain Ω in C is
invariant under the system (1) (i.e.,for all z ∈ Ω, the corresponding solution z(t) ∈ Ω
for all t ≥ 0). If ∀z ∈ Ω, f(z) 9= 0, then ∃ξ ∈ ∂Ω such that every solution z(t)→ ξ as
t→∞ once z(0) ∈ Ω.
PROOF. Since Ω is a bounded and simply connected domain, by Riemann’s map-

ping theorem [3, p.230], there exists a conformal mapping M : Ω → ∆ such that
M(∂Ω) ⊂ ∂∆ (where ∂Ω is the boundary of Ω, while ∆ and ∂∆ denote the open unit
disc and its boundary respectively). Since Ω is bounded and invariant there exists a
semiflow {Φt |∀t ≥ 0} where Φt : Ω → Ω is 1-1 and anaylytic.. Choose h > 0 which is
sufficiently small. Then Φh is analytic on Ω. Let F =M ◦Φh ◦M−1. Then F : ∆→ ∆
is analytic. By the Theorem of normal family [3, p.224], the set {F k | k = 1, 2, 3, ...}
of iterates of F contains a convergent subsequence F ki → G as i → ∞, where G is
analytic on ∆ and the convergence is uniform for each compact set contained in ∆.
Since f(z) 9= 0 for all z ∈ Ω, by Theorem 1, it follows that every solution z(t) = Φt(z)
converges to a point α ∈ ∂Ω as t → ∞. This implies that F k(w) tends to a point in
∂∆ as k → ∞. Hence the mapping G maps ∆ to ∂∆. So we have |G(w)| = 1 for all
w ∈ ∆. In turn, we have the following chain of implications:

∂

∂w
(G(w)G(w)) = 0⇒ ∂Ḡ

∂w
G+ Ḡ

∂G

∂w
= 0⇒ ∂G

∂w
= 0,

since ∂Ḡ
∂w = 0 and since G is analytic. Thus G(w) ≡ ζ for some ζ ∈ ∂∆. Thus

∀w ∈ ∆, F k(w)→ ζ as k →∞,
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⇒ ∀z ∈ Ω, Φkh(z)→ ζ, ξ =M−1(ζ) as k→∞,
⇒ ∀z ∈ Ω, z(t) = Φt(z)→ ζ as t→∞.

The proof is complete.

The following result can be regarded as an analogue of Schwarz Lemma [3, p.135]
for (1).

THEOREM 3. Assume f(0) = 0 and ∀b ∈ ∂∆, Re(f(b)b̄) < 0. Then ∃K > 0
and δ > 0 such that (i) every solution z(t) of (1) with initial point z ∈ ∆ satisfies
|z(t)| ≤ Ke−δt|z|, and (ii) Re(f 3(0)) < 0.
PROOF. Clearly, the condition Re(f(b)b̄) < 0 implies that ∀b ∈ ∂∆, f(b) 9= 0

and f(b) points toward the interior of ∆. So ∆ is invariant under the system (1).
Then there exists a semiflow {Φt|t ≥ 0} whereΦt : ∆ → ∆ is 1-1 and analytic such
that every solution z(t) satisfying z(0) = z can be expressed as z(t) = Φt(z), and
z = Φ0(z). Since ∂∆ is compact, ∃h > 0 sufficiently small such that. Φh(b) ∈ ∆ for all
b ∈ ∂∆. Let F = Φh. Then F is analytic on ∆ and continuous on ∆̄. Since f(0) = 0,
F (0) = Φh(0) = 0. Let G(z) = F (z)/z. Then G is analytic on ∆, and

max
|b|=1

|G(b)| = max
|b|=1

|F (b)/b| = α < 1.

By the Maximum Module Principle,

|F (z)| ≤ α|z|⇒ |F k(z)| ≤ αk|z| = eklnα|z|, ∀k = 1, 2, 3, ... .
For each t ≥ 0, t = kh+ r, where k ∈ N and 0 ≤ r < h. It follows that

Φt(z) = Φkh+r(z) = Φ
k
h(Φr(z)), (3)

and
|Φt(z)| ≤ e−khδ|z| = e−(kh+r)δerδ|z| ≤ Ke−δt|z|, (4)

where δ = − ln(α)/h and K = 1/α. Hence (i) is proved.
Since the convergence F k(z)→ 0 as k →∞ is uniform for each compact set in ∆,

by Cauchy integral formula [3, p.114], we have

lim
k→∞

(F k)3(0) = lim
k→∞

1

2πi Cr

F k(z)

z2
dz (Cr = {z | |z| = r, z ∈ C}),

=
1

2πi Cr

lim
k→∞

F k(z)

z2
dz

=
1

2πi Cr

0dz

= 0.

Thus
lim
k→∞

(Φkh)(0)
3 = lim

k→∞
(Φ3h(0))

k = 0⇒ |Φ3h(0)| < 1⇒ Re(f 3(0)) < 0 (5)

since h is sufficiently small. This completes the proof.
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The following result can be regarded as an analogue of the contraction principle.

THEOREM 4. Let Ω be a bounded, simply connected and invariant domain for the
system (1). Suppose ∀b ∈ ∂Ω, f(b) is not 0 and points toward the interior of Ω. Then
(i) ∃ξ ∈ Ω such that . ∀z ∈ Ω, the corresponding solution z(t)→ ξ as t→∞, and (ii)
Re(f 3(ξ)) < 0.
PROOF. From the assumption that ∀b ∈ ∂Ω, f(b) points toward the interior of

Ω, it follows that each solution z(t) with b ∈ ∂Ω as the initial point is forced to flow
into Ω, i.e., z(t) ∈ Ω for every t > 0. Since Ω is invariant, the semiflow {Φt |t ≥ 0},
where Φt : Ω → Ω is 1-1 and analytic, exists such that the solution z(t) can be
represented as z(t) = Φt(z), if z(0) = z ∈ Ω. Choose h > 0 sufficiently small. Then
Φh : Ω̄ → Ω is continuous and analytic on Ω. By Riemann mapping theorem, there
exists conformal mappingM : Ω→ ∆, since Ω is bounded and simply connected. Then
G =M ◦Φh ◦M−1 : ∆→ ∆ is analytic, and G is continuous on ∆̄. By Brouwer fixed
point theorem [5] and the assumption of the Theorem, ∃ζ ∈ ∆ such that G(ζ) = ζ. Let
Q(z) = (z − ξ)/(1− ξ̄z) where ξ = M−1(ζ). Then Q(ξ) = 0. Set H = QGQ−1. Then
H(0) = 0 and H is analytic on ∆. By the argument in the proof of Theorem 3(i), it
follows that ∃K > 0 and δ > 0 such that .

|Q ◦M ◦ Φh ◦M−1 ◦Q−1(z)| ≤ Ke−δz|z|.
Hence Φt(z)→ ξ as t→∞, where ξ =M−1(ζ). The proof of Re(f 3(ξ)) < 0 is similar
to that of Theorem 3(ii).

EXAMPLE. Consider the equation

ż = i(z2 − 1).
Let f(z) = i(z2 − 1). Then 1 and −1 are equilibria and f 3(1) = 2i, f 3(−1) = −2i. By
a direct derivation, we obtain that for each solution z(t) if z(0) /∈ i?∪ {±1}, then z(t)
has to satisfy

z(t) =
1 + z(0)−1

z(0)+1 + e
i2t

1− z(0)−1
z(0)+1 + e

i2t

Hence z(t) is periodic with period π. Note that the imaginary axis i? = {iy | y ∈ ?}
is invariant, and the system can be reduced to ẏ = −(y2 + 1). Hence the solution
y(t) = tan(tan−1(y(0))− t) tends to −∞ as t→ tan−1(y(0)) + π/2.
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