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Abstract

The left and right inverse eigenvalue problem (IEVP) is a special class of inverse eigenvalue problems
(IEVP) that has several applications in engineering and science. However, few authors have studied the
left and right IEVP with submatrix constraints. We provide necessary and suffi cient conditions along
with the general expression to the left and right IEVP with submatrix constraints for centrosymmetric
solutions. We also provide the solution of optimal approximation problem for left and right IEVP. For
a given arbitrary (n × n) real matrix Â, we find a unique solution matrix A∗ to left and right IEVP
such that least Frobenius norm ‖Â− A∗‖ is to be obtained, where A∗ is centrosymmetric in nature. In
addition, we provide an algorithm for calculating the general solution with a numerical example.

1 Introduction

Since the early 19th century, the study of matrix algebra has been a more interesting research topic for
researchers in the field of linear algebra. Many researchers have studied a centrosymmetric matrix which is
a special type of symmetric matrix [1—4]. A (n × n) centrosymmetric matrix A = SnASn, where Sn is a
counter-identity matrix, whose elements are all equal to zero except those on the counter-diagonal, which
are all equal to one [5]. Centrosymmetric matrices have several applications in different fields, i.e., communi-
cation theory, statistics, physics, harmonic, differential quadrature, differential equation, numerical analysis,
engineering, magic square, pattern recognition, Markov process, etc. [6—12]. The symmetric Toeplitz matrix
is a special type of the centrosymmetric matrix, in which each descending diagonal from left to right is
constant, and appears in digital signal processing and other areas [38, 39]. Eigenvalues and eigenvectors of
the centrosymmetric matrix have been helpful within various fields [13, 14]. If T is a linear transformation
from a vector space V (F ) into itself and v(6= 0) ∈ V , then v is an eigenvector of T if T (v) = λ(v), where λ is
scalar in F , known as the eigenvalue [15]. Many researchers have studied inverse eigenvalue problems in the
field of linear algebra. An inverse eigenvalue problem deals with the rebuilding of the matrix from fixed data.
The spectral data may be composed of the complete or partial information of eigenvalues or eigenvectors.
The purpose of the inverse eigenvalue problem is to build a matrix that preserves both a definite special
structure and given spectral property [16, 17]. An inverse eigenvalue problem arises in different fields of
applications, such as central design, system identification, seismic tomography, principal component analy-
sis, exploration and remote sensing, antenna array processing, geophysics, molecular spectroscopy, physics,
structure analysis, circuit theory and mechanic system simulator, etc. [18—24]. Furthermore, the inverse
eigenvalue problem (IEVP) plays an important role in the field of linear algebra. It helps in finding the solu-
tions for various matrices like orthogonal matrix, Jacobi matrix, and centrosymmetric matrix [25—29]. From
the above analysis, it has been observed that many researchers have studied IEVP for the centrosymmetric
matrix under submatrix constraints [25—27]. But few researchers have studied the left and right IEVP for
the centrosymmetric matrix [30—32]. The left and right IEVP are a particular class of IEVP, which mostly
come in perturbation analysis of matrix eigenvalue, in recursive matrices, and appear in several applications
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[15, 30—36]. In [30, 33, 34, 15] authors use special properties of eigenpairs of a matrix to solve the left and
right IEVP for Skew-symmetric matrices, generalized centrosymmetric matrices, κ Per-symmetric matrices,
symmetrizable matrices, orthogonal matrices and κ-Hermitian matrices. In [31, 35] authors have studied
the left and right IEVP for real matrices, semi-positive definite matrices, generalized reflexive, anti-reflexive,
and (R,S) symmetric matrices with a specific structure of the matrix. Therefore, we study the left and right
IEVP for the centrosymmetric matrix under the submatrix principal constraint in this paper. We divide
this paper into four sections. The first section contains the introductory part, the second section includes
notation and preliminaries, and definitions. The third section includes necessary and suffi cient conditions
and a general solution matrix to Problem 1, which is discussed in Section 2. In Section 4, we provide the
uniqueness theorem of Problem 2, which is discussed in Section 2, and then obtain the unique approximation
solution matrix with the orthogonal invariance of the Frobenius norm. In addition, we give an algorithm to
compute the unique approximation solution. We conclude the result of the problems in the end.

2 Notations and Preliminaries

In this paper, we use the following notations. Let Rm×n be set of all m × n real matrices, Cm×n be set
of all complex matrices, Rm×n represent the set of all real numbers, On×n denote the set of all orthogonal
matrices, CSRn×n denote the set of all n×n centrosymmetric matrices, (ai,j) (1 ≤ i ≤ m, 1 ≤ j ≤ m), R(A),
A+, AT , ρ(A) and tr(A) denotes the elements, column space, Moore-Penrose generalized inverse, transpose,
rank, and trace of matrix A, respectively. Let 0n, In, Sn be zero matrices of size n, identity matrix of order
n, and counter-identity matrix (reverse identity matrix) respectively. For A,B ∈ R(m×n), 〈A,B〉 = tr(BTA)
denotes the inner product of matrices A and B. The Frobenius norm is ‖A‖ =

√
〈A,A〉 =

√
tr(ATA).

Rm×n endowed with 〈·, ·〉 is a Hilbert inner product space.

2.1 Basic Definitions

In this section, we provide important definitions related to this paper with appropriate examples. In De-
finitions 1—3, we construct a centrosymmetric matrix, central principal submatrix and trailing principal
submatrix respectively. Furthermore, in Definitions 4—5, we define an orthogonal matrix, left and right
eigenpairs, symmetric and anti-symmetric vectors respectively.

Definition 1 A (n×n) real matrix A is known as a centrosymmetric matrix if (ai,j) = (an+1−i,n+1−j), (1 ≤
i, j ≤ n).

For instance,

A =

a b c
d e d
c b a


is a (3× 3) centrosymmetric matrix.

Definition 2 A m-square central principal matrix AC(m) of matrix A is defined as

AC(m) = (0mk, Im, 0mk)A

0mk
Im
0mk

 ,

where 0 is a (m× k) zero matrix and I is an (m×m) identity matrix.
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For instance, if A is of order 5, then A has no (2 × 2) central principal submatrices. But A does have
(3× 3) central principal submatrices situated in the centre of the given matrix, i.e.,

A =


a1 b1 c1 d1 e1
a2 b2 c2 d2 e2
a3 b3 c3 b3 a3
e2 d2 c2 b2 a2
e1 d1 c1 b1 a1

 .

From above example, it is clearly that the central pincipal matrix AC(m) of matrix A is also centrosymmetric
matrix.

Definition 3 A m-square trailing principal submatrix At(m) is defined as follows:

At(m) = (0m, In−m, 0m)A

(
0m,n−m
Im

)
,

where 0 is a (m× (n−m)) zero matrix and I is an (m×m) identity matrix.

For instance, if A is of order 5, then A has no (2 × 2) trailing prinicpal submatrices. But A does have
(3× 3) trailing principal submatrices situated in the left corner of a given matrix as follows:

A =


a1 b1 c1 d1 e1
a2 b2 c2 d2 e2
a3 b3 c3 b3 a3
e2 d2 c2 b2 a2
e1 d1 c1 b1 a1

 .

From above example, it is clearly that the trailing principal matrix At(m) of matrix A may or may not be
a centrosymmetric matrix.

Definition 4 Matrix O(n×n) is said to be an orthogonal matrix, if OTO = OOT = I, I is an (n×n) identity
matrix.

Definition 5 Let x ∈ Rn. A vector x is said to be symmetric vector if Snx = x. A vector x is said to be
an anti-symmetric vector if Snx = −x.

Property 1 For partial left and right eigenpairs (eigenvalues and their corresponding eigenvectors) (λi, xi),
i = 1, 2, ..., h1, (µj , yj), j = 1, 2, ..., h2, and a particular (n × n) matrix set S, matrix A ∈ S will be derived
from equation given below

Axi = λixi i = 1, 2, ..., h1,
yTj A = µjy

T
j j = 1, 2, ..., h2,

(1)

where h1 ≤ m, h2 ≤ l, λi, µj are eigenvalues, xi, yj are corresponding eigenvectors and S is a subspace of
Rn×n.

If X = (x1, x2, ...xh1) ∈ Rn×m, λ = diag(λ1, λ2, ..., λh1) ∈ Rm×m, Y = (y1, y2, ..., yh2) ∈ Rn×l, Γ =
diag(µ1, µ2, ..., µh2) ∈ R

l×l, then (1) is equivalent to

AX = Xλ and Y TA = ΓY T . (2)

Assume that (λi, xi), i = 1, 2, ..., h1 denotes right eigenpairs of A; (µj , yj), j = 1, 2, .., h2 denotes left eigen-
pairs of matrix A. The problems studied in this paper may be described as follows:

Problem 1. For X,λ, Y,Γ and A0 ∈ CSRk×k, h1 ≤ m ≤ n, h2 ≤ l ≤ n, k ≤ n, find A ∈ CSRn×n such
that

AX = Xλ, Y TA = ΓY T and AC(k) = A0,
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where AC(k) be the (k × k) leading principal submatrix.

Problem 2. Given an arbitrary matrix Â ∈ Rn×n, find A∗ ∈ SA such that∥∥∥A∗ − Â∥∥∥ = min ∀A∈SA

∥∥∥A− Â∥∥∥ ,
where SA is the solution set of Problem 1.

3 General Solutions to Problem 1

In this section, we study the central submatrices of the centrosymmetric matrix, which has the same proper-
ties and structure as the given centrosymmetric matrix. Therefore, both matrices have similar expressions.
In addition, we give the properties of the eigenpairs of centrosymmetric matrices and we have expressed
the special form of the eigenvectors of centrosymmetric matrices. Furthermore, we give the necessary and
suffi cient conditions for the existence of a general solution matrix to Problem 1, which is discussed in Section
2.
Now, ei is ith (i ∈ natural numbers) column of In, and let Sn = (en, en−1, ..., e2, e1). Then Sn = STn ,

SnS
T
n = In. Let k = [n2 ], where [n2 ] is the greatest integer and less than or equal to n

2 , and let orthogonal
matrices be given below:

Dn =


1√
2

(
Ik Ik
Sk −Sk

)
if n = 2k,

1√
2

Ik 0 Ik
0
√

2 0
Sk 0 −Sk

 if n = 2k + 1.

Lemma 1 ([15]) A matrix A is centrosymmetric of order n iff SnASn = A.

Lemma 2 ([27]) A matrix A ∈ CSRn×n, if and only if there exists A1 and A2, which are (n− k)× (n− k)
and (k × k) real matrices, respectively, such that

A = Dn

(
A1 0
0 A2

)
DT
n . (3)

Lemma 3 Let A ∈ CSRn×n be formed as in equation (3). Then (k × k) central principal submatrix AC(k)
of A is given below

AC(k) = Dk

(
A1 0
0 A2

)
DT
k , (4)

where order of A1 and A2 are ((k − t)× (k − t)) and (k × k) respectively.

Proof. If n = 2r, from equation (3) and conditions discussed in Definition 2, i.e., a (2r× 2r) matrix having
only central principal submatrices of even order, so

AC(k) =

(
M NSt
StN StMSt

)
,where M,N ∈ Rt×t and k = 2t.

Thus,

DT
k AC(k)Dk =

1

2

(
It St
It −St

)(
M NSt
St StMSt

)(
It St
It −St

)
=

(
M +N 0

0 M −N

)
.

By setting, M +N = A1, M −N = A2, we obtain the (k× k) central principal submatrix of AC(k) as given
below

AC(k) = Dk

(
A1 0
0 A2

)
DT
k . (5)
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If n = 2r + 1, and a {(2r + 1)× (2r + 1)} matrix has central principal submatrices of odd order, so

AC(k) =

 M ut NSt
vTt α vTt St
StN Stut StNSt

 ,

where M,N ∈ Rt×t, ut = (0, It)u, v
T
t = (0, It)v, k = 2t+ 1. Hence,

DT
k AC(k)Dk =

1

2

It 0 St
0
√

2 0
It 0 −St

 M ut NSt
vTt α vTt St
StN Stut StNSt

It 0 It
0
√

2 0
St 0 −St


=

M +N
√

2ut 0√
2vTt α 0
0 0 M −N

 .

By setting, (
M +N

√
2ut√

2vTt α

)
= A1, M −N = A2,

then AC(k) may be written as

AC(k) = Dk

(
A1 0
0 A2

)
DT
k . (6)

By combining equation (5) and equation (6) we get (k × k) central principal submatrix of A which is given
as in equation (4).

Lemma 4 Let A ∈ CSRn×n be formed as in equation (3). Then (k× k) central principal submatrix of A is
given below

A0(k) = Dk

(
A1 0
0 A2

)
DT
k , (7)

where A10 ∈ R(k−t)×(k−t) and A20 ∈ Rt×t. The matrix A0(k) is central principal submatrix of order (k× k)
if and if only A10 and A20 both are trailing principal submatrix of A1 and A2, respectively.

Lemma 5 Assume that A ∈ CSRn×n and (λi, xi), (µj , yj) (where 1 ≤ i ≤ h1, 1 ≤ j ≤ h2 ) are right and
left real eigenpairs of A, then so are Snxi, SnyTj , xi ± Snxi, yTj ± SnyTj .

Proof. Given P ∈ CSRn×n, if (λi, xi), (µj , yj) (where 1 ≤ i ≤ h1, 1 ≤ j ≤ h2 ) are right and left real
eigenpairs respectively, then we get, from Lemma 1,

PSnxi = SnPxi = λiSnxi and yTj SnP = yTj PSn = µjSny
T
j .

Therefore, xi ± Snxi are eigenvectors associated with λi, where xi + Snxi are symmetric vectors, while
xi − Snxi are anti-symmetric vectors. Similarly, yTj + Sny

T
j are symmetric vectors, and yTj − Sny

T
j are

anti-symmetric vectors.
If (λi, xi), (µj , yj) (where 1 ≤ i ≤ h1, 1 ≤ j ≤ h2 ) are right and left complex eigenpairs respectively,

then we get, from Lemma 1,

PSnX̂i = SnPX̂i = λ̂iSnX̂i and Ŷ Tj SnP = Ŷ Tj PSn = Γ̂jSnŶ
T
j .

Thus, P (X̂i ± SnX̂i) = (X̂i ± SnX̂i)λ̂i and (Ŷ Tj ± Ŷ Tj Sn)P = Γ̂j(Ŷ
T
j ± Ŷ Tj Sn), where the columns of

X̂i+SnX̂i = (ξi+Snξi, ηi+Snηi) are symmetric vectors, and X̂i−SnX̂i = (ξi−Snξi, ηi−Snηi). Similarly, the
columns of Ŷ Tj +Ŷ Tj Sn = (ξi+Snξi, ηi+Snηi) are symmetric vectors, and Ŷ

T
j −Ŷ Tj Sn = (ξi−Snξi, ηi−Snηi).
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From above analysis, we assume that X, Y and Γ, λ in Problem 1 may be written as given below:

X =

(
M̃1 N1
SrM̃1 −SrN1

)
, Y =

(
M̃2 N2
SrM̃2 −SrN2

)
, n = 2r, (8)

X =

 M̃1 N1√
2cT 0

SrM̃1 −SrN1

 , Y =

 M̃2 N2√
2dT 0

SrM̃2 −SrN2

 , n = 2r + 1, (9)

λ = diag(λ1, λ2), Γ = diag(Γ1,Γ2). (10)

where M̃1 ∈ Rr×s1 , N1 ∈ Rr×(m−s1), c ∈ Rs1 , M̃2 ∈ Rr×s2 , N2 ∈ Rr×(l−s2), d ∈ Rs2 , λ1 ∈ Rs1×s1 ,
λ2 ∈ R(m−s1)×(m−s1), Γ1 ∈ Rs2×s2 , Γ2 ∈ R(l−s2)×(l−s2), where λ1, λ2, Γ1, Γ2 are block diagonals. Thus,
DT
nX and DT

nY are given as follows:
If n = 2r, then

DT
nX =

1√
2

(
Ir Sr
Ir −Sr

)(
M̃1 N1
SrM̃1 −SrN1

)
=

(√
2M̃1 0

0
√

2N1

)
,

and

DT
nY =

1√
2

(
Ir Sr
Ir −Sr

)(
M̃2 N2
SrM̃2 −SrN2

)
=

(√
2M̃2 0

0
√

2N2

)
.

If n = 2r + 1, then

DT
nX =

1√
2

Ir 0 Sr
0
√

2 0
Ir 0 −Sr

 M̃1 N1√
2cT 0

SrM̃1 −SrN1

 =

√2M̃1 0√
2cT 0

0
√

2N1

 ,

and

DT
nY =

1√
2

Ir 0 Sr
0
√

2 0
Ir 0 −Sr

 M̃2 N2√
2dT 0

SrM̃2 −SrN2

 =

√2M̃2 0√
2dT 0

0
√

2N2

 .

Now, for n = 2r, set M̃1 = M1, M̃2 = M2, and for n = 2r + 1, set M1 =

(
M̃1

cT

)
, M2 =

(
M̃2

dT

)
, then for all

arbitrary n, DT
nX and DT

nY may be written in the following form:

DT
nX =

(√
2M1 0

0
√

2N1

)
, (DT

nY )T =

(√
2M2 0

0
√

2N2

)T
(11)

where M1 ∈ R(n−r)×s1 , N1 ∈ Rr×(m−s1), M2 ∈ R(n−r)×s2 , N2 ∈ Rr×(l−s2).

Lemma 6 ([27]) Given X ∈ Rn×m, Y ∈ Rn×l, λ ∈ Rm×m, and Γ ∈ Rl×l as in Section 2, then there exists
a matrix A ∈ Rn×n such that {

AX = Xλ,

Y TA = ΓY T ,

if and only if Y TXA = ΓY TX, XλX+X = Xλ and ΓY T = Y +Y ΓY T .

In addition, its general solution may be written as:

P = XλX+ + (Y T )+ΓY T (I −XX+) +Q1GQ
T
2 ,

where G ∈ R(n−r1)×(n−r2), Q1 ∈ Rn×(n−r1), Q1
TQ1 = In−r1 , r1 = ρ(Y ), range space (Q1) = Null space

(Y T ) [37, Lemma 3.7]. Assume that X ∈ Rm×m, Y ∈ Rn×l, B ∈ Rk×l be given. Denote

U1 ≡ {A ∈ Rm×n | f1(A) = ‖XAY −B‖ = min}.
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where min shows the matrix norm minimization. Then, every element of U1 has following form

A = X+BY + +G−X+XGY Y +, ∀G ∈ Rm×n. (12)

In particular, f1(A) = 0 has matrices solutions in Rm×n, if and only if X+XBY Y + = B, and its general
solution may be also expressed in the form of equation (12).

Theorem 1 Partition A0 ∈ CSRk×k as in equation (7). Let X ∈ Rm×m, and Y ∈ Rn×l be given as in
equations (8)—(9), λ ∈ Rm×m, and Γ ∈ Rl×l be given as in equation (10). Partition DT

nX and DT
nY as in

equation (11). Denote

M0 = M1λ1M
+
1 + (NT

1 )+Γ1N
T
1 (Ik−t −M1M

+
1 ), N0 = M2λ2M

+
2 + (NT

2 )+Γ2N
T
2 (It −M2M

+
2 );

H1 = (0, Ik−t)Q3, H2 = QT4 (0, Ik−t)
T
, H3 = (0, It)Q4, H4 = QT5 (0, It)

T
;

K1 = A10 − (0, Ik−t)M0(0, Ik−t)
T
, K2 = A20 − (0, It)N0(0, It)

T ,

(13)

where, Q3 ∈ R(n−r)×(n−r−r3), r3 = rank(N1), Q4 ∈ R(n−r)×(n−r−r4), r4 = rank(M1), Q5 ∈ Rr×(r−r5),
r5 = rank(N2), Q6 ∈ Rr×(r−r6), r6 = rank(M2), range space (Q3) = null space (NT

1 ), range space (Q4) =
null space (MT

1 ), range space (Q5) = null space (NT
2 ), range space (Q6) = null space (MT

2 );

QT3Q3 = In−r−r3 , QT4Q4 = In−r−r4 , QT5Q5 = Ir−r5 , QT6Q6 = Ir−r6 . (14)

Then, Problem 1 is solvable if and only if

NT
1 M1λ1 = Γ1N

T
1 M1, M1λ1M

+
1 M1 = M1λ1, Γ1N

T
1 = N+

1 N1Γ1N
T
1 , (15)

NT
2 M2λ2 = Γ2N

T
2 M2, M2λ2M

+
2 M2 = M2λ2, Γ2N

T
2 = N+

2 N2Γ2N
T
2 , (16)

H1H
+
1 K1H

+
2 H2 = K1, H3H

+
3 K2H

+
4 H4 = K2. (17)

In addition, every matrix A ∈ SA may be expressed as

A = Dn

(
M0 +Q3G1Q

T
4 0

0 N0 +Q5G2Q
T
6

)
DT
n , (18)

where 
G1 = H+

1 K1H
+
2 +G3 −H+

1 H1G3H2H
+
2 ,

G2 = H+
3 K2H

+
4 +G4 −H+

3 H3G4H4H
+
4 ,

G3 ∈ R(n−r−r3)×(n−r−r4),
G4 ∈ R(r−r5)×(r−r6),

(19)

are arbitrary.

Proof. From Lemmas 2 and 3, Problem 1 is equivalent to evaluating A1 ∈ R(n−r)×(n−r) and A2 ∈ Rr×r,
such that

A = Dn

(
A1 0
0 A2

)
DT
n , (20)

where, A1 and A2 satisfy {
A1M1 = M1λ1,
Y T1 A1 = Γ1Y

T
1 ,

{
A2M2 = M2λ2,
Y T2 A2 = Γ2Y

T
2 ,

A10 = A1[k − t] = (0, Ik−t)A1(0, Ik−t)
T
,

and
A20 = A2[t] = (0, It)A2(0, It)

T
.
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By Lemma 6, we know that the equation (20) holds if and only if,

NT
1 M1λ1 = Γ1N

T
1 M1, M1λ1M

+
1 M1 = M1λ1, Γ1N

T
1 = N+

1 N1Γ1N
T
1 , (21)

NT
2 M2λ2 = Γ2N

T
2 M2, M2λ2M

+
2 M2 = M2λ2, Γ2N

T
2 = N+

2 N2Γ2N
T
2 , (22)

which means that equation (16) holds. Furthermore, A1 and A2 can be expressed as

A1 = M0 +Q3G1Q
T
4 , A2 = N0 +Q5G2Q

T
6 , (23)

where G1 ∈ R(n−r−r3)×(n−r−r4) and G2 ∈ R(r−r5)×(r−r6) are arbitrary real matries.
Now, using the definitions of K1, K2, H1, H2, H3 and H4 in equations (13) and substitute (21)—(23) into

(23), then
H1G1H2 = K1, H3G2H4 = K2. (24)

From Lemma 6, equation 24 holds

H1H
+
1 K1H

+
2 H2 = K1, H3H

+
3 K2H

+
4 H4 = K2,

which implies that equation (17) holds, and G1, G2 may be written as

G1 = H+
1 K1H

+
2 +G3 −H+

1 H1G3H2H
+
2 ,

G2 = H+
3 K2H

+
4 +G4 −H+

3 H3G4H4H
+
4 ,

where, G3 ∈ R(n−r−r3)×(n−r−r4) and G4 ∈ R(r−r5)×(r−r6) are arbitrary.
Therefore, the solution to Problem 1 has the form of equation (18)

A = Dn

(
M0 +Q3G1Q

T
4 0

0 N0 +Q5G2Q
T
6

)
DT
n .

4 The Optimal Approximation Solution

In this section, we provide the uniqueness theorem of Problem 2 which is discussed in Section 2 and also
provide an unique approximation solution with the Frobenius norm. In addition, we provide an algorithm to
evaluate the unique solution. From equation (18), it is easily proved that the solution set SA is a nonempty
closed convex set. Thus,the optimal approximation problem has an unique solution as follows: let us consider
singular decompositions of H1, H2, H3, H4 given in equation (13) as

H1 = U1

(∑
1 0

0 0

)
V T1 , H2 = U2

(∑
2 0

0 0

)
V T2 , H3 = U3

(∑
3 0

0 0

)
V T3 and H4 = U4

(∑
4 0

0 0

)
V T4 , (25)

where qi = ρ(H1), σi = diag(σ
(i)
1 , σ

(i)
2 , . . . , σ

(i)
qi ), q(i)j > 0, (j = 1, . . . , qi; i = 1, . . . , 4); U1 = (U11, U12) ∈

O(k−t)×(k−t), V1 = (V11, V12) ∈ O(n−r−r3)×(n−r−r3), U11 ∈ R(k−t)×q1 , V11 ∈ R(n−r−r3)×q1 , U2 = (U21, U22) ∈
O(n−r−r4)×(n−r−r4), V2 = (V21, V22) ∈ O(k−t)×(k−t), U21 ∈ R(n−r−r4)×q2 , V21 ∈ R(k−t)×q2 , U3 = (U31, U32) ∈
Ot×t, V3 = (V31, V32) ∈ O(r−r5)×(r−r5), U31 ∈ Rt×q3 , V31 ∈ R(r−r5)×q3 , U4 = (U41, U42) ∈ O(r−r6)×(r−r6),
V4 = (V41, V42) ∈ Ot×t, U41 ∈ R(r−r6)×q4 , V41 ∈ Rt×q4 .

Theorem 2 Given an arbitrary Â ∈ Rn×n and assume that the singular decompositions of H1,H2,H3,H4

have the forms given in equation (25). Partition the matrix DT
n ÂDn as follows:

DT
n ÂDn =

(
Â11 Â12
Â21 Â22

)
, (26)
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where Â11 ∈ R(n−r)×(n−r), Â22 ∈ Rr×r. If SA 6= φ, then Problem 2 has a unique solution as follows

A∗ = Dn

(
M0 +Q3G1Q

T
4 0

0 N0 +Q5G2Q
T
6

)
DT
n , (27)

where
G1 = H+

1 K1H
+
2 +QT3 Â11Q4 −H+

1 H1Q
T
3 Â11Q4H2H

+
2

and
G2 = H+

3 K2H
+
4 +QT5 Â22Q6 −H+

3 H3Q
T
5 Â22Q6H4H

+
4 .

Proof. Let A be an arbitrary solution in SA. Then from equation (18)

‖A− Â‖2 =

∥∥∥∥Dn

(
M0 +Q3G1Q

T
4 0

0 N0 +Q5G2Q
T
6

)
DT
n − Â

∥∥∥∥2
= ‖M0 +Q3G1Q

T
4 − Â11‖

2
+ ‖N0 +Q5G2Q

T
6 − Â22‖

2
+ ‖Â12‖2 + ‖Â21‖

2
. (28)

Thus, ‖A− Â‖ = minA∈SA , if and only if{
‖Q3G1QT4 − (Â11 −M0)‖ = minG1∈R(n−r−s3)×(n−r−s4) ,

‖Q5G2QT6 − (Â22 −N0)‖ = minG2∈R(r−s5)×(r−s6) .
(29)

From equation (14), we have that QT3 (NT
1 )+ = 0, QT5 (NT

2 )+ = 0, M+
1 Q4 = 0 and M+

2 Q6 = 0. Thus, from
equation (13), the definitions of M0 and N0, we get Q

+
3M0Q4 = 0 and Q+5 N0Q6 = 0. Thus, equations (15)

and (29) are equivalent to {
‖G1 −QT3 Â11Q4‖ = minG1∈R(n−r−s3)×(n−r−s4) ,

‖G2 −QT5 Â22Q6‖ = minG2∈R(r−s5)×(r−s6) .
(30)

Let us consider the partition

V T1 G3U2 =

(
G31 G32
G33 G34

)
where G3 ∈ Rq1×q2 . (31)

From equation (25), V +12H
+
1 = 0, H+

2 U22 = 0, then we derive by using equation (19),

‖G1 −QT3 Â11Q4‖
2

= ‖G3 −H+
1 H1G3H2H

+
2 − (QT3 Â11Q4 −H+

1 K1H
+
2 )‖2

= ‖
(
G31 G32
G33 G34

)
−
(
Iq1 0
0 0

)(
G31 G32
G33 G34

)(
Iq1 0
0 0

)
−V T1 (QT3 Â11Q4 −H+

1 K1H
+
2 )U2‖2

=

∥∥∥∥(−V T11(QT3 Â11Q4 −H+
1 K1H

+
2 )U21 G32 − V T11QT3 Â11Q4U22

G33 − V T12QT3 Â11Q4U21 G34 − V T12QT3 Â11Q4U22

)∥∥∥∥2
= ‖V T11(QT3 Â11Q4 −H+

1 K1H
+
2 )U21‖

2
+ ‖G32 − V T11QT3 Â11Q4U22‖

2

+‖G33 − V T12QT3 Â11Q4U21‖
2

+ ‖G34 − V T12QT3 Â11Q4U22‖
2
.

Hence, equation (29) holds if and only if

G32 = V T11Q
T
3 Â11Q4U22, G33 = V T12Q

T
3 Â11Q4U21, G34 = V T12Q

T
3 Â11Q4U22,

Hence, equation (31) becomes

G3 = V1

(
G31 V T11Q

T
3 Â11Q4U22

V T12Q
T
3 Â11Q4U21 V T12Q

T
3 Â11Q4U22

)
UT2 ,
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where G31 ∈ Rq1×q2 is an arbitrary matrix.
Similarly, equation (29) holds if and only if

G4 = V3

(
G41 V T31Q

T
5 Â22Q6U42

V T32Q
T
5 Â22Q6U41 V T32Q

T
5 Â22Q6U42

)
UT4 ,

where G41 ∈ Rq3×q4 is an arbitrary matrix.
Putting G3 and G4 into equation (19) and using equation (25), we get

G1 = H+
1 K1H

+
2 + V1

(
G31 V T11Q

T
3 Â11Q4U22

V T12Q
T
3 Â11Q4U21 V T12Q

T
3 Â11Q4U22

)
UT2

= H+
1 K1H

+
2 +QT3 Â11Q4 −H+

1 H1Q
T
3 Â11Q4H2H

+
2

and
G2 = H+

3 K2H
+
4 +QT5 Â22Q6 −H+

3 H3Q
T
5 Â22Q6H4H

+
4 .

The solution A∗ in equation (27) is an unique solution of Problem 2 which is the element of solution set of

Problem 1 i.e., A∗ ∈ SA. For any arbitrary matrix Â ∈ Rn×n the value of
∥∥∥A∗ − Â∥∥∥ is equal to minimum

of
∥∥∥A− Â∥∥∥ for all A ∈ SA. It clearly shows that the unique solution to the optimal approximation problem

has the same form as given in equation (27).

Now, we provide an algorithm to evaluate A∗ of optimal approximation problem and give a numerical
example.

Algorithm 1 1. Input λ, Γ, X, Y , A0, and Â, where X, Y , and λ, Γ are given in equation (8) and
equation (10), respectively. Also get λ1, λ2, Γ1,Γ2 from equation (10).

2. Compute M1,M2, N1, N2 from equation (11).

3. Construct Q3, Q4, Q5, Q6 have formed as in equation (14) and satisfies equation (15).

4. Follow equation (13) to calculate M0, N0, H1, H2, H3, H4, K1, K2.

5. If equation (16) and equation (17) holds, then compute; otherwise, stop.

6. Derive Â11, Â22 according to equation (26).

7. Calculate A∗ in light of equation (27)

Example 1 Assume that n = 10, m = 5, l = 4, k = 4 and let

X =



−0.1940 −0.2040 −0.1525 0.0289 −0.1827
−0.2201 0.3856 −0.2383 0.0178 −0.5523
−0.2403 −0.0444 0.5239 0 −0.2435

0.4128 0.5009 0.2133 −0.1773 0.3090
−0.4310 0.2385 −0.2205 −0.1370 0.0825
−0.4310 0.2385 0.2205 0.1370 −0.0825

0.4128 0.5009 −0.2133 0.1773 −0.3090
−0.2403 −0.0444 −0.5239 0 0.2435
−0.2201 0.3856 0.2383 −0.0178 0.5523
−0.1940 −0.2040 0.1525 −0.0289 0.1827


,
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Y =



0.3003 0.1599 −0.5677 0
−0.4007 0.0851 0.2460 −0.1018
0.1443 0.5989 −0.1283 0.0967
−0.3396 0.1831 0.0401 −0.1561
0.3362 −0.2739 −0.1395 0.1888
−0.3362 −0.2739 0.1395 −0.1888
−0.3396 0.1831 −0.0401 0.1561
0.1443 0.5989 0.1283 −0.0967
−0.4007 0.0851 −0.2460 0.1018
0.3003 0.15990.1599 0.5677 0


,

A0 =


−0.1500 −0.3800 1.7900 0.8600
0.5700 −0.6950 −0.1050 0.7200
0.7200 −0.1050 −0.6950 0.5700
0.8600 1.7900 −0.3800 −0.1500

 ,

∧
=


−0.2996 0 0 0 0

0 2.8021 0 0 0
0 0 −1.8519 0.6464 0
0 0 −0.6464 −1.8519 0
0 0 0 0 1.3045

 ,

Γ =


−2.8021 0 0 0

0 1.4094 0 0
0 0 0.7297 −0.1497
0 0 0.14997 0.7297

 ,

Â =



0.0657 2.0075 0.3873 0.4359 2.8338 −0.2362 2.6122 2.6671 1.2700 1.0236
0.5056 1.9765 2.5052 1.4702 1.6393 −0.6379 −0.3746 1.6080 −0.0465 0.7979
0.7621 −0.5224 2.9527 −0.7588 −0.1227 0.5337 2.1803 2.5570 0.9993 0.2150
2.0318 1.5027 −0.6027 −0.7284 2.3471 −0.8447 1.3917 2.7394 0.5252 2.8008
−0.9709 1.8532 1.5550 1.8680 2.3362 2.6468 0.7396 2.3321 0.5615 −0.4634
−0.4634 0.5615 2.3321 0.7396 2.6468 2.3362 1.8680 1.5550 1.8532 −0.9709
2.8008 0.5252 2.7394 1.3917 −0.8447 2.3471 −0.7284 −0.6027 1.5027 2.0318
0.2150 0.9993 2.5570 2.1003 0.5337 −0.1220 −0.7588 2.9527 −0.5224 0.7621
0.7979 −0.0465 1.6080 −0.3746 −0.6379 1.4702 1.4702 2.5052 1.9765 0.5056
1.2036 1.2700 2.6671 2.6122 −0.2362 2.8338 0.4359 0.3873 2.0075 0.0657


.

The unique optimal approximation centrosymmetric solution of Problem 2 is

A∗ =



0.1508 −1.1821 0.2580 0.8433 −0.3736 −0.8136 0.0293 −0.5635 3.0517 0.8846
−0.4766 0.4265 0.1178 1.1871 0.1878 −0.5211 0.3468 −0.6498 2.2080 0.4536
−0.4341 −1.0929 1.3792 −0.4953 −1.3551 0.3625 0.3682 0.2613 1.4391 0.5285
0.1325 0.7412 0.2174 −0.1500 −0.3800 1.7900 0.8600 0.2651 4.7715 0.9564
−1.7722 −3.4805 −0.2438 0.5700 −0.6950 −0.1050 0.7200 −0.7233 6.3473 1.8046
1.8046 6.3473 −0.7233 0.7200 −0.1050 −0.6950 0.5700 −0.2438 −3.4805 −1.7722
0.9564 4.7715 0.2651 0.8600 1.7900 −0.3800 −0.1500 0.2174 0.7412 0.1325
0.5285 1.4391 0.2613 0.3682 0.3625 −1.3551 −0.4953 1.3792 −1.0929 −0.4341
0.4536 2.2080 −0.6498 0.3468 −0.5211 0.1878 1.1871 0.1178 0.4265 −0.4766
0.8846 3.0517 −0.5635 0.0293 −0.8136 −0.3736 0.8433 0.2580 −1.1821 0.1508


.

We also have A∗C(4) = A0. Above example proved that Algorithm 1 is feasible. Furthermore, we also have∥∥∥A∗ − Â∥∥∥ = 21.1711.



12 Inverse Eigenvalue Problem

5 Conclusion

In this paper, we have studied the left and right IEVP for generalized centrosymmetric matrices. We have
proved the necessary and suffi cient conditions of Problem 1, which is discussed in Section 2. We also expressed
the general solution matrix of Problem 1. For any arbitrary Â ∈ Rn×n, we have obtained a unique solution
A∗ ∈ CSRn×n for Problem 2 which is discussed in Section 2. We have proposed an algorithm for finding
the best approximation solution for generalized centrosymmetric matrices. A numerical experiment proves
the effectiveness of results of this article.
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