Curvature equation with conic singularties and integrable system

Ting-Jung Kuo Department of Mathematics National Taiwan Normal University

Abstract

Let (E_{τ}, dz^2) , $\tau \in \mathbb{H}$ be a flat torus. We consider the following PDE:

$$\Delta u + e^u = \sum_{j=1}^N 4\pi \alpha_j \delta_{p_j} \text{ on } E_\tau \tag{1}$$

where δ_{p_j} is the dirac measure and $\alpha_j > -1$. In the literature, equation (1) is arised from conformal geometry. Indeed, (1) is equivalent to saying that the conformal metric $ds^2 = \frac{1}{2}e^u |dz|^2$ with conic singularties at p_j has the Gaussian curvature 1. By classical Liouville theorem, the curvature equation is also an integrable system which yields a complex ODE (a generalization of the classical Lame equation) and the solvability of equation (1) is equivalent to saying that the corresponding complex ODE is always apparent and has unitary monodromy. The study of the monodromy of a general complex ODE is difficult in general. However, recently, we also discover its relation with KdV theory. In this talk, I will talk about this deep connection and focus on the study of the complex ODE from monodromy point of view.