Covering grids with multiplicity

Shagnik Das
Department of Mathematics
National Taiwan University

Abstract

Let $S_{1}, S_{2} \subseteq \mathbf{R}$ be two finite sets of size n, and suppose we wish to cover the points of the grid $\Gamma=S_{1} \times S_{2} \subseteq \mathbf{R}^{2}$ with as few lines as possible. It is straightforward to see that at least n lines are required. However, if our lines must avoid a given point $\overrightarrow{s_{0}} \in \Gamma$, then a celebrated theorem of Alon and Füredi shows that the minimum number of lines in such a cover jumps to $2(n-1)$.

In this talk, we consider the multiplicity version of this problem: in a k-cover, for some $k \in \mathbf{N}$, the lines must continue to avoid $\overrightarrow{s_{0}}$, but cover all other points of Γ at least k times. We shall show that the smallest k-cover of a typical grid contains $\left(\frac{3}{2}+o(1)\right) k(n-1)$ lines, improving a bound given by Ball and Serra. However, the standard $\operatorname{grid} \Gamma_{n}=\{0,1, \ldots, n-1\} \times\{0,1, \ldots, n-1\}$ can be covered with fewer lines, and we will give nontrivial lower and upper bounds on the size of its smallest k-cover.

This is joint work with Anurag Bishnoi, Simona Boyadzhiyska and Yvonne den Bakker.

