CHAPTER 12
INTEGRATION ON \mathbb{R}^n

12.1 JORDAN REGIONS

DEFINITION. A grid on a rectangle $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is a collection of rectangles \mathcal{G} defined in following way. For $j = 1, \cdots, n$ $\mathcal{P}_j(\mathcal{G}) = \{x^{(j)}_k : k = 1, \cdots, n_j\}$ is a partition of $[a_j, b_j]$, then \mathcal{G} is the collection of rectangles of the form $I_1 \times \cdots \times I_n$ where $I_j = [x^{(j)}_{k-1}, x^{(j)}_k]$ for $j = 1, \cdots, n$. [Grid is partition in \mathbb{R}^n]. A grid \mathcal{H} is said finer than \mathcal{G} if and only $\mathcal{P}_j(\mathcal{G}) \subset \mathcal{P}_j(\mathcal{H})$ for $j = 1, \cdots, n$.

DEFINITION. The outer sum of E with respect to a grid \mathcal{G} of the rectangle R is

$$ V(E, \mathcal{G}) := \sum_{R_j \cap E \neq \emptyset} |R_j|. $$

Remark. Let R be a n-dimensional rectangle.

(1) Let E be a subset of R, and let \mathcal{G}, \mathcal{H} be grids on R. If \mathcal{G} is finer than \mathcal{H} then

$$ V(E, \mathcal{G}) \leq V(E, \mathcal{H}). $$

(2) If $A \subset B \subset R$, then $V(A, \mathcal{G}) \leq V(B, \mathcal{G})$.

Example. Let $R = [0, 1] \times [0, 1]$ and let $A = R \cap \mathbb{Q}^2, B = R \setminus A$, then $V(A, \mathcal{G}) = V(B, \mathcal{G}) = V(R, \mathcal{G})$.

DEFINITION. A subset E of \mathbb{R}^n is Jordan region if and only if there is a rectangle R contains E, and for each $\epsilon > 0$, there is a grid on R such that $V(\partial, \mathcal{G}) < \epsilon$.

DEFINITION. Let E be a Jordan region in \mathbb{R}^n and R is a rectangle in \mathbb{R}^n contains E. The volume(or the Jordan content) of E is defined by

$$ Vol(E) = \inf_{\mathcal{G}} V(E, \mathcal{G}). $$

Remark. $Vol(E)$ is independent of the choice of R.

Remark. For R is a rectangle of \mathbb{R}^n, then $Vol(R) = |R|$.

Remark. Suppose that E is a bounded subset in \mathbb{R}^n.

(1) E is a Jordan region of volume zero if and only if for each $\epsilon > 0$ we can find a grid \mathcal{G} such that $V(E, \mathcal{G}) < \epsilon$.

(2) E is a Jordan region if and only if $Vol(\partial E) = 0$.

(3) If E is a set of volume zero and $A \subset E$, then A is a Jordan region and $Vol(A) = 0$.

Typeset by AMSTeX
DEFINITION. Let $\mathcal{E} = \{E_j\}$ be a collection of subsets of \mathbb{R}^n.

1. \mathcal{E} is said to be nonoverlapping if and only if $E_j \cap E_k$ is of volume zero for $j \neq k$.
2. \mathcal{E} is said to be pairwise disjoint if and only if $E_j \cap E_k = \emptyset$ is for $j \neq k$.

Theorem. Let E be a subset of \mathbb{R}^n. Then E is a Jordan region of volume zero if and only if for every $\epsilon > 0$ there is a finite collection of cubes Q_k of the same size such that

$$\overline{E} \subset \bigcup_1^q Q_k \text{ and } \sum_1^q |Q_k| < \epsilon.$$

Corollary. If E_1, E_2 are Jordan regions, then $E_1 \cup E_2$ is a Jordan region and

$$\text{Vol}(E_1 \cup E_2) \leq \text{Vol}(E_1) + \text{Vol}(E_2).$$

Corollary. Suppose that V is a bounded open set in \mathbb{R}^n and $\phi : V \to \mathbb{R}$ is 1-1 and C^1 on V with $\Delta + \phi \neq 0$.

1. If E is of volume zero and $\overline{E} \subset V$, then $\phi(E)$ is of volume zero.
2. If $\{E_k\}, k \in \mathbb{N}$ is a nonoverlapping collection of subsets in \mathbb{R}^n with $E_k \subset V$ for all $k \in \mathbb{N}$, then $\phi(E = k)$ is a nonoverlapping collection of sets in \mathbb{R}^n.
3. If E is a Jordan region and $\overline{E} \subset V$, then $\phi(E)$ is a Jordan region.

12.2 RIEMANN INTEGRATION ON JORDAN REGION

DEFINITION. Let E be a Jordan region in \mathbb{R}^n, let $f : E \to \mathbb{R}$ is a bounded function, let R be a rectangle such that $E \subset R$ and let $\mathcal{G} = \{R_1, \cdots, R_p\}$ be a grid on R. Extend f to \mathbb{R}^n by setting $f(x) = 0$ for $x \in \mathbb{R}^n \setminus E$.

1. The upper sum of f on E with respect to \mathcal{G} is

$$U(f, \mathcal{G}) = \sum_{R_j \cap E \neq \emptyset} M_j |R_j|$$

where $M_j = \sup_{x \in R_j} f(x)$.
2. The lower sum of f on E with respect to \mathcal{G} is

$$L(f, \mathcal{G}) = \sum_{R_j \cap E \neq \emptyset} m_j |R_j|$$

where $m_j = \inf_{x \in R_j} f(x)$.
3. The upper and lower integrals of f on E are defined by

$$(U) \int_E f(x) dx := (U) \int_E f dV := \inf_{\mathcal{G}} U(f, \mathcal{G})$$

and

$$(L) \int_E f(x) dx := (L) \int_E f dV := \sup_{\mathcal{G}} L(f, \mathcal{G}),$$

where the supremum and infimum are taken over all grids on R.
Remark. Let \(E \) be a nonempty Jordan region in \(\mathbb{R}^n \), let \(f : E \to \mathbb{R} \) be bounded and let \(R \) be a rectangle that contains \(E \).

1. If \(\mathcal{G} \) and \(\mathcal{H} \) are grids on \(R \), then \(L(f, \mathcal{G}) \leq U(f, \mathcal{H}) \).
2. The upper and lower integrals of \(f \) over \(E \) exist, do not depend on the choice of \(R \), and satisfy

\[
(L) \int_E f \, dV \leq (U) \int_E f \, dV.
\]

DEFINITION. A real-valued bounded function \(f \) defined on a Jordan region \(E \) is said to be (Riemann) integrable on \(E \) if and only if for every \(\varepsilon > 0 \) there is a grid \(\mathcal{G} \) such that

\[
U(f, \mathcal{G}) - L(f, \mathcal{G}) < \varepsilon.
\]

Remark. Let \(E \) be a Jordan region in \(\mathbb{R}^n \) and suppose that \(f : E \to \mathbb{R} \) is bounded. Then \(f \) is integrable on \(E \) if and only if

\[
(U) \int_E f(x) \, dx = (L) \int_E f(x) \, dx.
\]

When \(f \) is integrable on \(E \) we denote the common value by \(\int_E f(x) \, dx \) or \(\int_E f \, dV \).

Theorem. Let \(E \) be a Jordan region in \(\mathbb{R}^n \) and let \(R \) be a rectangle that contains \(E \), and suppose that \(f : E \to \mathbb{R} \) is integrable on \(E \). If \(g(x) = f(x) \) for \(x \in E \) and \(g(x) = 0 \) for \(x \in \mathbb{R}^n \setminus E \), then \(g \) is integrable on \(R \) and \(\int_R g \, dV = \int_E f \, dV \).

Theorem. Let \(E \) be a Jordan region in \(\mathbb{R}^n \) and suppose that \(f : E \to \mathbb{R} \) is bounded. Then given \(\varepsilon > 0 \) there is a grid \(\mathcal{G}_0 \) such that if \(\mathcal{G} = \{R_1, \ldots, R_p\} \) is any grid finer than \(\mathcal{G}_0 \), then

\[
| (U) \int_E f(x) \, dx - \sum_{R_j \in \mathcal{G}_0} M_j |R_j|| < \varepsilon
\]

and

\[
| (L) \int_E f(x) \, dx - \sum_{R_j \in \mathcal{G}_0} m_j |R_j|| < \varepsilon.
\]

Theorem. If \(E \) is a closed Jordan region in \(\mathbb{R}^n \) and \(f : E \to \mathbb{R} \) is continuous on \(E \), then \(f \) is integrable on \(E \).

Theorem. If \(E \) is a closed Jordan region, then

\[
Vol(E) = \int_E 1 \, dV.
\]
Theorem. [LINEAR PROPERTIES]. Let E be a Jordan region in \mathbb{R}^n and suppose that $f, g : E \to \mathbb{R}$, and let α be a scalar.

(1) If f, g are integrable on E, then so are αf and $f + g$. In fact
\[
\int_E \alpha f(x) \, dx = \alpha \int_E f(x) \, dx
\]
and
\[
\int_E (f(x) + g(x)) \, dx = \int_E f(x) \, dx + \int_E g(x) \, dx.
\]

(2) If E_1, E_2 are nonoverlapping Jordan regions and f is integrable on both E_1 and E_2, then f is integrable on $E_1 \cup E_2$ and
\[
\int_{E_1 \cup E_2} f(x) \, dx = \int_{E_1} f(x) \, dx + \int_{E_2} f(x) \, dx.
\]

Theorem. Let E be a Jordan region in \mathbb{R}^n and suppose that $f, g : E \to \mathbb{R}$ are bounded functions.

(1) If E_0 is of volume zero, then f is integrable on E_0 and
\[
\int_{E_0} f(x) \, dx = 0.
\]

(2) If f is integrable on E and there is a subset E_0 of E such that $Vol(E_0) = 0$ and $f(x) = g(x)$ for all $x \in E \setminus E_0$, then g is integrable on E and
\[
\int_{E} g(x) \, dx = \int_{E} f(x) \, dx.
\]

Theorem. [COMPARISON THEOREM]. Let E be a Jordan region in \mathbb{R}^n and suppose that $f, g : E \to \mathbb{R}$ are integrable on E.

(1) If $f(x) \leq g(x)$ on E, then
\[
\int_{E} f(x) \, dx \leq \int_{E} g(x) \, dx.
\]

(2) If M, m are scalar satisfy $m \leq f(x) \leq M$ for $x \in E$, then
\[
mVol(E) \leq \int_{E} f(x) \, dx \leq MVol(E).
\]

(3) The function $|f|$ is integrable on E and
\[
| \int_{E} f(x) \, dx | \leq \int_{E} |f(x)| \, dx.
\]
Theorem. [MEAN VALUE THEOREM]. Let E be a Jordan region in \mathbb{R}^n and suppose that $f, g : E \to \mathbb{R}$ are integrable on E with $g(x) \geq 0$ for all $x \in E$.

(1) Then there is a number c satisfying $\inf_{x \in E} f(x) \leq c \leq \sup_{x \in E} f(x)$ such that

$$c \int_E f(x) \, dx = \int_E f(x) g(x) \, dx.$$

(2) There is a number c satisfying $\inf_{x \in E} f(x) \leq c \leq \sup_{x \in E} f(x)$ such that

$$c \Vol(E) = \int_E f(x) \, dx.$$

DEFINITION. A set $E \subset \mathbb{R}^n$ is said to be of measure zero if and only if for every $\epsilon > 0$ there is a countable collection of rectangles $\{R_j\}$ such that

$$E \subset \bigcup_{1}^{\infty} R_j \text{ and } \sum_{1}^{\infty} |r_j| < \epsilon.$$

Remark. If $\{E_j\}$ be a sequence of measure zero subset of \mathbb{R}^n, then $E = \bigcup_{1}^{\infty} E_j$ is also of measure zero.

Theorem. Let E be a Jordan region in \mathbb{R}^n and suppose that $f : E \to \mathbb{R}$ is bounded.

(1) Then f is Riemann integrable on E if and only if the set of points of discontinuity of f is of measure zero.

(2) Suppose that V is an open set in \mathbb{R}^n such that $\overline{E} \subset V$, and $\phi : V \to \mathbb{R}^n$ is 1-1 and ϕ^{-1} is C^1 on $\phi(V)$ with $\Delta_{\phi^{-1}} \neq 0$. If f is integrable on $\phi(E)$, then $f \circ \phi$ is integrable on E.

12.3 ITERATED INTEGRALS

Lemma. Let $R = [a, b] \times [c, d]$ be a two dimensional rectangle and suppose that $f : R \to \mathbb{R}$ is bounded. If $f(x \cdot)$ is integrable on $[c, d]$ for each $x \in [a, b]$, then

$$(L) \int_R f \, dA \leq (L) \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx$$

$$\leq (U) \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx \leq (U) \int_R f \, dA.$$
Theorem. [FUBINI’S THEOREM] Let \(R = [a, b] \times [c, d] \) be a rectangle and let \(f : R \to \mathbb{R} \). Suppose that \(f(x, \cdot) \) is integrable on \([c, d]\) for each \(x \in [a, b] \), \(f(\cdot, y) \) is integrable on \([a, b]\) for each \(y \in [c, d] \), and that \(f \) is integrable on \(R \) (as a function in two variables), then

\[
\iint_R f \, dA = \int_a^b \int_c^d f(x, y) \, dy \, dx = \int_c^d \int_a^b f(x, y) \, dx \, dy.
\]

Example.

\[
\int_0^1 \int_0^1 y^3 e^{xy^2} \, dy \, dx.
\]

Remark. Let \(f : [0, 1] \times [0, 1] \to \mathbb{R} \) be defined by

\[
f(x, y) = \begin{cases}
2^{2n} & \text{for } (x, y) \in [2^{-n}, 2^{-n+1}) \times [2^{-n}, 2^{-n+1}), \\
-2^{2n+1} & \text{for } (x, y) \in [2^{-n-1}, 2^{-n}) \times [2^{-n}, 2^{-n+1}), \\
0 & \text{otherwise.}
\end{cases}
\]

Then \(\int_0^1 \int_0^1 f(x, y) \, dx \, dy = 0 \) but \(\int_0^1 \int_0^1 f(x, y) \, dy \, dx = 1 \).

Remark. Let \(f : [0, 1] \times [0, 1] \to \mathbb{R} \) be defined by \(f(x, y) = 1 \) if \((x, y) = (\frac{p}{2^n}, \frac{q}{2^n}) \) and \(f(x, y) = 0 \) otherwise. Then

\[
\int_0^1 \int_0^1 f(x, y) \, dx \, dy = 0 = \int_0^1 \int_0^1 f(x, y) \, dy \, dx,
\]

but \(f \) is not integrable on \(R \).

Remark. Let \(f : [0, 1] \times [0, 1] \to \mathbb{R} \) be defined by \(f(x, y) = 0 \) for \(x = 0 \) or when \(x \) or \(y \) is irrational, and \(f(x, y) = 1/q \) when \(x, y \in \mathbb{Q} \) and \(x = p/q \) in reduced form. Then \(f \) is integrable on \(R \) and \(f(\cdot, y) \) is integrable on \([0, 1] \) for all \(y \in [0, 1] \) but \(f(x, \cdot) \) is not integrable on \([0, 1] \) for infinite many \(x \in [0, 1] \).

Lemma. Let \(R = [a_1, b_1] \times \cdots \times [a_n, b_n] \) be an \(n \)-rectangle and let \(f : R \to \mathbb{R} \) be integrable on \(R \). If for each \(x = (x_1, \cdots, x_{n-1}) \in R_n \) \(: = [a_1, b_1] \times \cdots \times [a_{n-1}, b_{n-1}] \), the function \(f(x, \cdot) \) is integrable on \([a_n, b_n] \), then \(\int_{a_n}^{b_n} f(x, t) \, dt \) is integrable on \(R_n \) and

\[
\int_R f(x, t) \, d(x, t) = \int_{R_n} \int_{a_n}^{b_n} f(x, t) \, dt \, dx.
\]

DEFINITION. \(E \subset \mathbb{R}^n \) is a projectable region if and only if there is a closed Jordan region in \(H \subset \mathbb{R}^{n-1} \) and index \(j \in \{1, \cdots, n\} \), and continuous functions \(\phi, \psi : H \to \mathbb{R} \) such that

\[
E = \{(x_1, \cdots, x_n) \in \mathbb{R}^n : (x_1, \cdots, \hat{x}_j, \cdots, x_n) \in H \}
\]

such that

\[
\phi(x_1, \cdots, \hat{x}_j, \cdots, x_n) \leq x_j \leq \psi(x_1, \cdots, \hat{x}_j, \cdots, x_n).
\]

DEFINITION. \(\Pi_k = \{x \in \mathbb{R}^n : x_k = 0\} \).
Theorem. Let E be a projectable region in \mathbb{R}^n generated by j, ϕ, ψ and H. Then E is a Jordan region in \mathbb{R}^n. Moreover, if $f : E \to \mathbb{R}$ is continuous on E, then

$$\int_E f(x)dx = \int_H (\int_{\phi(x_1, \ldots, x_j, \ldots, x_n)} f(x_1, \ldots, x_n)dx_j)d(x_1, \ldots, x_j, \ldots, x_n).$$

Example. E is bounded by $x + y + z = 1, x = 0, y = 0, z = 0$ and $f(x, y, z) = x$.

Example. E is bounded by $|x| = 1, z = x^2 - y^2$, where $z \geq 0$, and $f(x, y, z) = x^2$.

Example. E is bounded by $z = y^2, z = 1, z = x, x = 0$ and $f(x, y, z) = x - z$.

12.4 CHANGE OF VARIABLES

Lemma. Let W be open in \mathbb{R}^n, let $\phi : W \to \mathbb{R}^n$ be 1-1 and continuously differentiable on W with $\Delta_\phi \neq 0$ on W, and suppose that ϕ^{-1} is continuously differentiable on $\phi(W)$ with $\Delta_{\phi^{-1}} \neq 0$ on $\phi(W)$. Suppose further that $|R| = \int_{\phi^{-1}(R)} |\Delta_\phi(x)|dx$ for every n-dimensional rectangle $R \subset \phi(W)$. If E is a Jordan region with $\overline{E} \subset W$, if f is integrable on $\phi(E)$, and if $f \circ \phi$ is integrable on E, then

$$\int_{\phi(E)} f(u)du = \int_E (f \circ \phi)(x)|\Delta_\phi(x)|dx.$$

Lemma. Let V be open in \mathbb{R}^n, let $\phi : V \to \mathbb{R}^n$ be 1-1 and continuously differentiable on V. If $\Delta_\phi(a) \neq 0$ for some $a \in V$, then there is an open rectangle W such that $a \in W \subset V$, Δ_ϕ is nonzero on W, ϕ^{-1} is C^1, and its Jacobian is nonzero on $\phi(W)$, and such that if R is an n-rectangle contained in $\phi(W)$, then $\phi^{-1}(R)$ is Jordan and

$$|R| = \int_{\phi^{-1}(R)} |\Delta_\phi(x)|dx.$$

Lemma. Suppose that V is an open set in $\mathbb{R}^n, a \in V$ and $\phi : V \to \mathbb{R}^n$ is continuously differentiable on V. If $\Delta_\phi(a) \neq 0$, then there exists an open rectangle $W \subset V$ containing a such that if E is Jordan with $\overline{E} \subset W$, if $f \circ \phi$ is integrable on E, and if f is integrable on $\phi(E)$, then

$$\int_{\phi(E)} f(u)du = \int_E (f(\phi(x))|\Delta_\phi(x)|dx.$$
Theorem. Suppose that V is an open set in \mathbb{R}^n and $\phi : V \to \mathbb{R}^n$ is 1-1 and continuously differentiable on V. If $\Delta_\phi \neq 0$ on V, if $f \circ \phi$ is integrable on E, and if f is integrable on $\phi(E)$, then

$$
\int_{\phi(E)} f(u) du = \int_E (f(\phi(x)))|\Delta_\phi(x)| dx.
$$

Example. Find the volume bounded by $z = x^2 + y^2, x^2 + y^2 = 4, z = 0$.

Example. Let $E = \{(x, y) : a^2 \leq x^2 + y^2 \leq 1$ and $0 \leq y \leq x\}$, find

$$
\iint_E \frac{x^2 + y^2}{x} dA.
$$

Example. Find the volume of the region E that lies inside $x^2 + y^2 + z = 4$, outside $x^2 - 2x + y^2 = 0$ and above $z = 0$.

Example. $\iint_Q x dW$ where $Q = B_3(0, 0, 0) \setminus B_2(0, 0, 0)$.

Example. $\iint_E \sin(x+y) \cos(2x-y) dA$, where E is bounded by $y = 2x - 1, y = 2x + 3, y = -x, y = -x + 1$.