1. (10 points) Let \(f : E \to \mathbb{R} \) be a nonnegative measurable function such that \(\int_E f < \infty \). Show that for any \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any measurable subset \(E_1 \subseteq E \) with \(|E_1| < \delta \) we have \(\int_{E_1} f < \varepsilon \).

Solution: Let
\[
 f_k(x) = \begin{cases} f(x), & \text{if } f(x) < k \\ k, & \text{if } f(x) \geq k \end{cases}, \quad x \in E.
\]
Then \(0 \leq f_k(x) \leq f(x) \) on \(E \) and by the Monotone Convergence Theorem we have
\[
 \lim_{k \to \infty} \int_E f_k(x) = \int_E f < \infty
\]
and so for any \(\varepsilon > 0 \) there exists \(N \) such that for any \(\varepsilon > 0 \) there exists \(N \) such that
\[
 \int_{E_1} f_N < \varepsilon / 2.
\]
Therefore for any \(E_1 \subseteq E \) with \(|E_1| < \delta := \frac{\varepsilon}{2} \) we would have
\[
 \int_{E_1} f \leq \int_{E_1} f_N < \varepsilon.
\]

2. (10 points) Do Exercise 3 in p. 85.

Solution: Since \(f_k \leq f \) a.e. on \(E \) (both are nonnegative), we have \(\int_E f_k \leq \int_E f \) for all \(k \). On the other hand, by Fatou’s lemma we get
\[
 \liminf_{k \to \infty} \int_E f_k = \int_E f \leq \liminf_{k \to \infty} \int_E f_k
\]
which implies
\[
 \int_E f \leq \limsup_{k \to \infty} \int_E f_k \leq \int_E f \leq \int_E f dx \leq \int_E f.
\]
Hence we have \(\lim_{k \to \infty} \int_E f_k = \int_E f \).

3. (10 points) Let \(f_k : E \to \mathbb{R} \) be a sequence of nonnegative measurable function satisfying \(\int_E f_k \to 0 \) as \(k \to \infty \). Show that \(f_k \to 0 \) in measure as \(k \to \infty \).

Solution: For any \(\varepsilon > 0 \) by Tchebyshev’s inequality we have
\[
 |\{ x \in E : |f_k - 0| > \varepsilon \}| = |\{ x \in E : f_k > \varepsilon \}| \leq \frac{1}{\varepsilon} \int_E f_k.
\]
Letting \(k \to \infty \), the conclusion follows.

Remark 1 (be careful) \(\int_E f_k \to 0 \) as \(k \to \infty \) does not, in general, imply that \(f_k \to 0 \) a.e. on \(E \).

4. (10 points) Compute the limit
\[
 \lim_{n \to \infty} \int_0^3 1 - \frac{x}{n} e^{x/2} dx
\]
and justify your answer.

Solution: Let
\[
 f_n(x) = \begin{cases} 1 - \frac{x}{n} e^{x/2}, & \text{if } x \leq n \\ 0, & \text{if } x > n. \end{cases}
\]
One can check that \(f_n(x) \leq f(x) = e^{-x/2} \) on \(E = [0, \infty) \). By Monotone Convergence Theorem we have
\[
 \lim_{n \to \infty} \int_E f_n = \int_E f = \int_0^\infty e^{-x/2} dx = 2.
\]