1. (10 points) Do Exercise 2 in p. 61.

Solution: Assume \(f \) takes distinct values \(a_1, \ldots, a_N \) on disjoint sets \(E_1, \ldots, E_N \). We can express the function \(f(x) \) as

\[
f(x) = a_1 \chi_{E_1}(x) + \cdots + a_N \chi_{E_N}(x), \quad x \in E = \bigcup_{k=1}^{N} E_k.
\]

If each \(E_k \) is measurable, then the characteristic function \(\chi_{E_k}(x) : E \to \mathbb{R} \) is a measurable function on \(E \). Hence if \(E_1, \ldots, E_N \) are all measurable, so is \(f(x) \).

Conversely, assume \(f(x) \) is measurable. Then by definition we know that (we may assume \(a_1 < a_2 < \cdots < a_N \)) the set \(\{ f > a_{N-1} \} \) is measurable. Since \(\{ f > a_{N-1} \} = E_N \), the set \(E_N \) is measurable. Similarly by

\[
E_{N-1} = \{ f > a_{N-2} \} - E_N
\]

we know that \(E_{N-1} \) is measurable. Keep going to conclude that \(E_1, \ldots, E_N \) are all measurable.

2. (10 points) Do Exercise 3 in p. 61.

Solution: Let \(F(x) = (f(x), g(x)), \ x \in \mathbb{R}^n, \ F : \mathbb{R}^n \to \mathbb{R}^2. \)

(\(\Rightarrow \)) Assume \(F \) is measurable. For any open set \(G_x \subset \mathbb{R} \), let \(G = G_x \times \mathbb{R} \). Then \(G \subset \mathbb{R}^2 \) is open and by the identity

\[
F^{-1}(G) = f^{-1}(G_x)
\]

we know that \(f^{-1}(G_x) \) is measurable for any open set \(G_x \subset \mathbb{R} \). Hence \(f : \mathbb{R}^n \to \mathbb{R} \) is measurable. The same for \(g : \mathbb{R}^n \to \mathbb{R} \).

(\(\Leftarrow \)) Assume \(f : \mathbb{R}^n \to \mathbb{R} \) and \(g : \mathbb{R}^n \to \mathbb{R} \) are both measurable. Let \(G \subset \mathbb{R}^2 \) be an arbitrary open set. We can express \(G \) as a countable union of nonoverlapping closed intervals \(G = \bigcup_{k=1}^{\infty} I_k \), where \(I_k = [a_k,b_k] \times [c_k,d_k] \). Note that

\[
F^{-1}(I_k) = f^{-1}[a_k,b_k] \cap g^{-1}[c_k,d_k] \quad (\text{both sets are measurable})
\]

and so \(F^{-1}(I_k) \) is measurable. By

\[
F^{-1}(G) = \bigcup_{k=1}^{\infty} F^{-1}(I_k)
\]

the set \(F^{-1}(G) \) is measurable in \(\mathbb{R}^n \). Hence \(F \) is a measurable function.

3. (10 points) Do Exercise 4 in p. 61.

Solution: For any \(a \in \mathbb{R} \), we have

\[
\{ x \in \mathbb{R}^n : f(Tx) > a \} = \{ x \in \mathbb{R}^n : f(Tx) \in (a, \infty) \} \subset \bigcup_{\mathfrak{a}} x \in \mathbb{R}^n : T^{-1}f^{-1}(\{ a \}) = \bigcup_{\mathfrak{a}} x \in \mathbb{R}^n : T^{-1}f^{-1}(\{ \infty \}) \subset \mathbb{R}^n .
\]

As \(T^{-1} : \mathbb{R}^n \to \mathbb{R}^n \) is linear and Lipschitz continuous, \(\mathfrak{a} \) is measurable. Hence \(f(Tx) \) is a measurable function.

\[\]
4. (20 points) Do Exercise 5 in p. 61.

First solution: We first prove the following

Lemma 0.1 The Cantor-Lebesgue function \(f(x) : [0, 1] \to [0, 1] \) satisfies \(f(x_1) = f(x_2) \), where \(x_1 \) and \(x_2 \) are in \(C \), if and only if both \(x_1 \) and \(x_2 \) are endpoints of some interval removed.

Proof. The direction \((\Leftarrow)\) is trivial.

\((\Rightarrow)\) Assume at least one of \(x_1, x_2 \) is not endpoint, say \(x_2 \). On the interval \((x_1, x_2)\), \(x_1 < x_2 \), \(x_1, x_2 \in C \), there exists some \(p \notin C \). Let \(I = (y_1, y_2) \) be the maximal open interval containing \(p \) such that \(I \cap C = \emptyset \) (note that the complement of \(C \) is open). We now have \(y_1, y_2 \in C \) and \(y_2 < x_2 \) (otherwise if \(y_2 = x_2 \), then \(x_2 \) must be an endpoint, impossible). Similarly one can find an open interval \(J = (z_1, z_2) \) such that \(J \subset (y_2, x_2) \) with \(y_2 < z_1 \) (otherwise \(y_2 \) is an isolated point of \(C \), impossible). Now the open interval \(J \) is on the right hand side of the open interval \(I \) with a positive distance away. These two distinct intervals must be exactly equal to some removed intervals in the process of constructing the Cantor set. Hence \(f(I) < f(J) \), which gives \(f(x_1) < f(x_2) \).

Corollary 0.2 If \(x \in C \) but \(x \) is not endpoint of some interval removed (say \(x = \frac{1}{3} \)), then there is no \(\tilde{x} \in C \), \(\tilde{x} \neq x \), such that \(f(\tilde{x}) = f(x) \).

Corollary 0.3 Let \(\tilde{C} = C - \{ \text{all right endpoints of the removed intervals} \} \), where \(C \) is the Cantor set. Then \(f : \tilde{C} \to [0, 1] \) is 1-1 and onto, and is strictly increasing on \(\tilde{C} \). Here \(f \) is the Cantor-Lebesgue function.

By the above corollary, we have \(g(y) : [0, 1] \to \tilde{C} \subset [0, 1] \), strictly increasing on \([0, 1]\), which is the inverse of \(f : \tilde{C} \to [0, 1] \). For any \(a \in [0, 1] \) the set

\[E_a := \{ y \in [0, 1] : g(y) \geq a \} = \{ y \in [0, 1] : y \geq f(a) \} \]

is measurable. Hence \(g \) is a measurable function on \([0, 1]\).

Let \(A \subset [0, 1] \) be a nonmeasurable set. Its image under \(g \) has measure zero, hence measurable. Let

\[\varphi = \chi_{g(A)} : [0, 1] \to \mathbb{R} \]

then \(\varphi \) is a measurable function on \([0, 1]\). But the composite function \(\varphi \circ g : [0, 1] \to \mathbb{R} \) is not measurable since the set

\[\frac{3}{2} \leq y \in [0, 1] : \varphi(g(y)) > \frac{1}{2} = A \]

is not measurable.

Second solution (much easier):

Let \(f(x) : [0, 1] \to [0, 1] \) be the Cantor-Lebesgue function and let \(g(x) = x + f(x) \). It is easy to see that \(g(x) : [0, 1] \to [0, 2] \) is a strictly increasing continuous function. Hence \(g(x) \) is a homeomorphism of \([0, 1]\) onto \([0, 2]\). We denote its continuous inverse by \(h : [0, 2] \to [0, 1] \). On each interval \(I_1, I_2, I_3, \ldots \), removed in the construction of the Cantor set, say the interval
\[I_1 = \left[\frac{1}{2}, \frac{2}{3} \right], \] the function \(g(x) \) becomes \(g(x) = x + \frac{1}{2} \). Hence \(g(x) \) sends \(I_1 \) onto an open interval with the same length. Using this observation one can see that

\[
\begin{align*}
\bar{\mathbb{A}} & = \mathbb{A} \cup \cdots \cup \mathbb{A} \\
g(I_k) & = \mathbb{I} \cup \cdots \cup \mathbb{I} \\
|g(I_k)| & = |I_k| = 1
\end{align*}
\]

which implies \(|g(C)| = 2 - 1 = 1\), where \(C \) is the Cantor set. Since \(g(C) \) has positive measure, by Corollary 3.39 in the book, there exists a non-measurable set \(B \subset g(C) \). Now consider the set \(A = h(B) \subset C \). It has measure zero, hence \(A \) is measurable. Let

\[\varphi = \kappa_A : [0, 1] \to \mathbb{R}, \quad |A| = 0 \]

then \(\varphi \) is a measurable function on \([0, 1]\). We now have two measurable functions \(h : [0, 2] \to [0, 1] \) (continuous) and \(\varphi : [0, 1] \to \mathbb{R} \). But the composite function \(\varphi \circ h : [0, 2] \to \mathbb{R} \) is not measurable since the set

\[\theta \in [0, 2] : \varphi(h(\theta)) > \frac{1}{2} \]

is not measurable. \(\blacksquare \)