A Characterization Of A Family Of Semiclassical Orthogonal Polynomials Of Class One*

Mohamed Ihsen Tounsi†

Received 11 November 2011

Abstract
In this paper, we give another characterization of a non-symmetric semiclassical orthogonal polynomials of class one.

1 Introduction
Our goal is to characterize the set of non-symmetric semiclassical orthogonal polynomials of class one \(\{W_n\}_{n \geq 0} \) verifying the three-term recurrence relation with \(\beta_n = (-1)^n \), \(n \geq 0 \) in a concise way as in [5, 6] via the study of the functional equation \((\Phi w)' + \Psi w = 0\) satisfied by its corresponding regular form \(w \). Some information about the shape of polynomials \(\Phi \) and \(\Psi \) intervening in the above functional equation are given due to the quadratic decomposition of \(\{W_n\}_{n \geq 0} \) and to a connection between \(w \) and a suitable symmetric regular form \(\vartheta \). As application, we characterize \(w \) by giving the functional equation, the recurrence coefficient \(\gamma_{n+1}, n \geq 0 \) and an integral representation.

We denote by \(P \) the vector space of polynomials with coefficients in \(\mathbb{C} \) and by \(P' \) its dual space. The action of \(u \in P' \) on \(f \in P \) is denoted as \(\langle u, f \rangle \). In particular, we denote by \((u)_n := \langle u, x^n \rangle \), \(n \geq 0 \), the moments of \(u \). For instance, for any form \(u \), any polynomial \(g \) and any \((a, b, c) \in (\mathbb{C} \setminus \{0\}) \times \mathbb{C}^2 \), we let \(Du = u' \), \(gu = u \), \(h_\alpha u \), \((x - c)^{-1} u \) and \(\delta_c \), be the forms defined in [3]:

\[
\langle u', f \rangle := -\langle u, f' \rangle, \quad \langle \sigma u, f \rangle := \langle u, \sigma f \rangle, \quad \langle gu, f \rangle := \langle u, gf \rangle, \quad \langle h_\alpha u, f \rangle := \langle u, h_\alpha f \rangle,
\]

\[
\langle \tau_{\alpha} u, f \rangle := \langle u, \tau_{-\alpha} f \rangle, \quad \langle (x - c)^{-1} u, f \rangle := \langle u, \delta_c f \rangle, \quad \langle \delta_c, f \rangle := \langle \delta_c, f \rangle,
\]

where \(\langle \sigma f \rangle (x) = f(x^2) \), \(\langle h_\alpha f \rangle (x) = f(ax) \), \(\langle \tau_{-\alpha} f \rangle (x) = f(x + b) \), \(\langle \delta_c, f \rangle (x) = \frac{f(x) - f(c)}{x - c} \)

for all \(f \in P \). It is easy to see that [3, 4]

\[
(fu)' = fu' + f'u, \quad f \in P, \quad u \in P', \tag{1}
\]

\[
f(x)\sigma u = \sigma(f(x)u), \quad f \in P, \quad u \in P', \tag{2}
\]

\[
\sigma(u') = 2(\sigma(xu))', \quad u \in P', \tag{3}
\]

*Mathematics Subject Classification: 33C45, 42C05.
†Institut Supérieur des Sciences Appliquées et de Technologie, University of Gabès, Rue Omar Ibn El Khattab, 6072, Gabès, Tunisia

210
\[x^{-1}(xu) = u - (u_0)\delta, \quad x(x^{-1}u) = u, \quad u \in \mathcal{D}'. \quad (4) \]

A form \(w \) is said to be regular whenever there is a sequence of monic polynomials \(\{W_n\}_{n \geq 0}, \deg W_n = n, n \geq 0 \) (MPS) such that \(\langle w, W_nW_m \rangle = k_n\delta_{n,m}, n, m \geq 0 \) with \(k_n \neq 0 \) for any \(n \geq 0 \). In this case, \(\{W_n\}_{n \geq 0} \) is called a monic orthogonal polynomial sequence (MOPS) and it is characterized by the following three-term recurrence relation [1]

\[
W_0(x) = 1, \quad W_1(x) = x - \beta_0, \\
W_{n+2}(x) = (x - \beta_{n+1})W_{n+1}(x) - \gamma_{n+1}W_n(x), \quad n \geq 0,
\]

where \(\beta_n = \frac{\langle w, xW_n^2 \rangle}{\langle w, W_n^2 \rangle} \in \mathbb{C} \) and \(\gamma_{n+1} = \frac{\langle w, W_{n+1}^2 \rangle}{\langle w, W_n^2 \rangle} \in \mathbb{C} \setminus \{0\}, \ n \geq 0. \)

When \(w \) is regular, \(\{W_n\}_{n \geq 0} \) is a symmetric (MOPS) if and only if \(\beta_n = 0, \ n \geq 0 \) or equivalently \(\langle w, W_{n+1} \rangle = 0, \ n \geq 0 \). Also, The form \(w \) is said to be normalized if \(\langle w, 1 \rangle = 1 \). In this paper, we suppose that any form will be normalized.

A form \(w \) is called semiclassical when it is regular and there exist two polynomials \(\Phi, \Psi, \deg \Phi = t \geq 0, \deg \Psi = p \geq 1 \) such that

\[
(\Phi w)' + \Psi w = 0. \quad (6)
\]

It’s corresponding orthogonal polynomial sequence \(\{W_n\}_{n \geq 0} \) is called semiclassical. The semiclassical character is kept by shifting [3, 4, 5]. In fact, let \(\{a^{-n}W_n(ax+b)\}_{n \geq 0}, \ a \neq 0, \ b \in \mathbb{C}; \) when \(w \) satisfies (6), then \(\left(h_{a^{-1}} \circ \tau_{-b}\right)w \) fulfills

\[
(a^{-t}\Phi(ax+b)(h_{a^{-1}} \circ \tau_{-b})w)' + a^{1-t}\Psi(ax+b)(h_{a^{-1}} \circ \tau_{-b})w = 0, \quad (7)
\]

and the recurrence coefficients of (5) are

\[
\frac{\beta_n - b}{a}, \quad \frac{\gamma_{n+1}}{a^2}, \quad n \geq 0. \quad (8)
\]

The semiclassical form \(w \) is said to be of class \(s = \max(p - 1, t - 2) \geq 0 \) if and only if [3, 4, 5]

\[
\prod_{c \in \mathcal{Z}_\Phi} \left\{ (\Psi(c) + \Phi'(c)) + \left(\langle w, (\theta_c \Psi) + (\theta_c^2 \Phi) \rangle \right) \right\} > 0, \quad (9)
\]

where \(\mathcal{Z}_\Phi \) is the set of zeros of \(\Phi \). In particular, when \(s = 0 \) the form \(w \) is usually called classical Hermite, Laguerre, Bessel and Jacobi, see [3, 4, 5].

LEMMA 1 ([3]). Let \(w \) be a symmetric semiclassical form of class \(s \) satisfying (6). The following statements hold.

i) When \(s \) is odd then the polynomial \(\Phi \) is odd and \(\Psi \) is even.

ii) When \(s \) is even then the polynomial \(\Phi \) is even and \(\Psi \) is odd.

Let \(\{W_n\}_{n \geq 0} \) be a (MOPS) with respect to the form \(w \) fulfilling the three-term recurrence relation (5) with

\[
\beta_n = (-1)^n, \quad n \geq 0. \quad (10)
\]
Such a (MOPS) is characterized by the following quadratic decomposition \[4\]
\[
W_{2n}(x) = P_n(x^2), \quad W_{2n+1}(x) = (x-1)P_n^*(x^2), \quad n \geq 0,
\]
where \(\{P_n\}_{n \geq 0}\) is a (MOPS) and \(\{P_n^*\}_{n \geq 0}\) is the sequence of monic Kernel polynomials of \(K\)-parameter 1 associated with \(\{P_n\}_{n \geq 0}\) defined by [1, 2]
\[
P_n^*(x) = \frac{1}{x-1} \left[P_{n+1}(x) - \frac{P_{n+1}(1)}{P_n(1)} P_n(x) \right], \quad n \geq 0.
\]
Furthermore the sequences \(\{P_n\}_{n \geq 0}\) and \(\{P_n^*\}_{n \geq 0}\) satisfy respectively the recurrence relation (5) with
\[
\begin{cases}
\beta_0^P = \gamma_1 + 1,
\beta_{n+1}^P = \gamma_{2n+2} + \gamma_{2n+3} + 1,
\gamma_{n+1}^P = \gamma_{2n+1} \gamma_{2n+2},
\end{cases}
\begin{cases}
\beta_0^s = \gamma_1 + \gamma_2 + 1,
\beta_{n+1}^s = \gamma_{2n+3} + \gamma_{2n+4} + 1,
\gamma_{n+1}^s = \gamma_{2n+2} \gamma_{2n+3},
\end{cases}
\]
for all \(n \geq 0\). Denoting by \(u\) and \(v\) the forms associated with \(\{P_n\}_{n \geq 0}\) and \(\{P_n^*\}_{n \geq 0}\) respectively, we get [4]
\[
u = \gamma_1^{-1}(x-1)\sigma w.
\]
The regularity of \(v\) means that [1]
\[
P_{n+1}(1) \neq 0, \quad n \geq 0.
\]
Moreover, the form \((x-1)w\) is antisymmetric, that is,
\[
((x-1)w)_{2n} = 0, \quad n \geq 0.
\]
Let now \(\lambda\) be a non-zero complex number and \(\vartheta\) be the form such that
\[
\lambda x \vartheta = (x-1)w.
\]
According to (17)-(18) we get \((x\vartheta)_{2n} = 0, \quad n \geq 0\). Hence \(\vartheta\) is a symmetric form. Multiplying (18) by \(x\), applying the operator \(\sigma\) and using (15) we get \(\lambda x \sigma \vartheta = \gamma_1 v\). Consequently, according to [3], the form \(\vartheta\) is regular if and only if
\[
\Omega_n(\lambda) = \gamma_1 P_{n-1}^{(1)}(0) + \lambda P_n^*(0) \neq 0, \quad n \geq 0,
\]
with \(P_n^{(1)}(x) = (\psi_0 P_{n+1}^*)(x), \quad n \geq 0\) and \(P_{-1}^{(1)}(x) := 0\).

LEMMA 2. There exists a non zero constant \(\lambda\) such that the form \(\vartheta\) given by (18) is regular.

PROOF. According to the following relation [2]
\[
P_{n+1}^{(1)}(x)P_{n+1}^*(x) - P_n^{(1)}(x)P_{n+2}^*(x) = \prod_{\nu=0}^{n} \gamma_{\nu+1}^s \neq 0, \quad n \geq 0,
\]
it is easy to see that
\[|P_n^{(1)}(0)| + |P_n^*(0)| \neq 0, \quad \forall n \geq 0. \tag{20} \]
Let \(n \) be a fixed nonnegative integer. If \(P_n^{(1)}(0) = 0 \), then \(P_n^*(0) \neq 0 \) from (20). So, condition (19) is satisfied for \(\lambda \neq 0 \). If \(P_n^*(0) = 0 \), then \(P_n^{(1)}(0) \neq 0 \) from (20). So, condition (19) satisfied for \(\lambda \neq 0 \). If \(P_n^{(1)}(0) \neq 0 \) and \(P_n^*(0) \neq 0 \), then for all \(\lambda \neq \lambda_n \), (20) is satisfied, where we have posed
\[\lambda_n = -\frac{P_n^{(1)}(0)}{P_n^*(0)}, \quad n \geq 0. \tag{21} \]
In any case there exists a constant \(\lambda \neq 0 \) such that (19) is fulfilled and so \(\vartheta \) is a regular form.

In what follows we assume that the (MOPS) \(\{W_n\}_{n \geq 0} \) associated with (5),(10) is semiclassical of class \(s_w \). Its corresponding regular form \(w \) is then semiclassical of class \(s_w \) satisfying the functional equation (6). Multiplying the equation (6) by \((x - 1)^2 \) and on account of (1) and (18), we deduce that the form \(\# \), when it is regular, is also semiclassical of class \(s_w \) at most \(s_w + 2 \) satisfying the functional equation
\[(E\vartheta')' + F\vartheta = 0, \tag{22} \]
with
\[E(x) = x(x - 1)\Phi(x); \quad F(x) = x((x - 1)\Psi(x) - 2\Phi(x)). \tag{23} \]
The next technical lemma is needed in the sequel.

LEMMA 3. For all root \(c \) of \(\Phi \), we have
\[a) \quad \left\langle \vartheta, \theta^2cE + \theta cF \right\rangle = \frac{1}{\chi}(c - 1)^2 \left\langle w, \theta c\Psi + \theta^2c\Phi \right\rangle + (1 - \frac{1}{\chi})(c - 1)(\Phi'(c) + \Psi(c)), \]
\[b) \quad E'(c) + F(c) = c(c - 1)(\Phi'(c) + \Psi(c)). \tag{24} \]

PROOF. Let \(c \) be a root of \(\Phi \). Write \(\Phi(x) = (x - c)\Phi_c(x) \) with \(\Phi_c(x) = (\theta_c\Phi)(x) \). From (22)-(23) we have
\[(\theta^2cE + \theta cF)(x) = \theta_c\left\{ \xi(\xi - 1)(\Phi_c(\xi) + \Psi(\xi)) \right\}(x) - 2x\Phi_c(x). \tag{25} \]
Taking \(g(x) = (\Phi_c + \Psi)(x) \) and \(f(x) = x(x - 1) \) in the following relation
\[\theta_c(fg)(x) = g(x)(\theta_c f)(x) + f(c)(\theta_c g)(x), \quad \text{for all } f, g \in \mathcal{P}, \tag{26} \]
(25) becomes
\[(\theta^2cE + \theta cF)(x) = (c - 1) \left\{ (\Phi_c + \Psi)(x) + c(\theta_c(\Phi_c + \Psi))(x) \right\} + x(\Psi - \Phi_c)(x). \tag{27} \]
From the second identity in (4), relation (18) is equivalent to
\[\vartheta = \frac{1}{\chi}(w - x^{-1}w) + (1 - \frac{1}{\chi})\delta_0. \tag{28} \]
We may also write
\[
\frac{1}{\lambda} \langle w, x^{-1} w \rangle, \theta^2 E + \theta F \rangle = \frac{1}{\lambda} \langle w, \theta^2 E + \theta F - \theta_0 (\theta^2 E + \theta F) \rangle.
\] (29)

Taking \(f(x) = (\theta_c (\Phi_c + \Psi)) (x) \) in the following
\[
\frac{c}{\theta_0} (\theta_c f + \theta_0 f), \quad f \in \mathcal{P}, \quad c \in \mathbb{C},
\] (30)

and applying the operator \(\theta_0 \) to (27), we obtain
\[
(\theta_0 (\theta^2 E + \theta F)) (x) = (\Psi - \Phi_c) (x) + (c - 1) (\theta_c (\Phi_c + \Psi)) (x).
\] (31)

This gives
\[
(\theta^2 E + \theta F)(x) - (\theta_0 (\theta^2 E + \theta F)) (x) = (c - 1)^2 (\theta_c (\Phi_c + \Psi)) (x) + (x + c - 2) \Psi - \Phi.
\] (32)

Thus (29) becomes
\[
\frac{1}{\lambda} \langle w, x^{-1} w \rangle, \theta^2 E + \theta F \rangle = \frac{1}{\lambda} (c - 1)^2 \langle w, \theta_c \Phi_c + \theta_c \Psi \rangle,
\] (33)

since \(\langle w, \Psi \rangle = 0 \) and \(\langle w, x \Psi(x) - \Phi(x) \rangle = 0 \) from (6). Next, by a simple calculation, we have
\[
\left(1 - \frac{1}{\lambda} \right) \delta_0, \theta^2 E + \theta F \right) = (1 - \frac{1}{\lambda}) (c - 1)(\Phi_c + \Psi)(c).
\] (34)

Adding (33) and (34) we obtain the first relation in (24). From (22)-(23), we have \(E'(c) = c(c - 1) \Psi'(c) \) and \(F(c) = c(c - 1) \Psi(c) \), hence the second relation in (24) holds.

Let us recall the following result about the class \(s_\theta \) of the form \(\psi \).

THEOREM 1. The form \(\psi \) is semiclassical and its class depends only on the zero \(x = 1 \) for any \(\lambda \neq \lambda_n, n \geq -1 \) where \(\lambda_n, n \geq 0 \) is given by (21) and
\[
\lambda_{-1} = \frac{\langle w, \theta_0 \Psi + \theta^2_0 \Phi \rangle + \Phi'(0) + \Psi(0)}{\Phi'(0) + \Psi(0)}.
\] (35)

Moreover, the semiclassical form \(\tilde{\psi} \) is of class \(s_\theta \) satisfying the functional equation
\[
\left(\tilde{E} \tilde{\psi} \right)' + \tilde{F} \tilde{\psi} = 0,
\] (36)

such that
\(a) \) if \(\Phi(1) \neq 0 \), then \(s_\theta = s_w + 2 \),
\[
\tilde{E}(x) = x(x - 1) \Phi(x) \quad \text{and} \quad \tilde{F}(x) = x ((x - 1) \Psi(x) - 2 \Phi(x));
\]
\(b) \) if \(\Phi(1) = 0 \) and \(\Psi(1) \neq 0 \), then \(s_\theta = s_w + 1 \),
\[
\tilde{E}(x) = x \Phi(x) \quad \text{and} \quad \tilde{F}(x) = x (\Psi(x) - (\theta_1 \Phi)(x)).
\]
c) if $\Phi(1) = 0$ and $\Psi(1) = 0$, then $s_\theta = s_w$,

$$E(x) = x(\theta_1 \Phi)(x) \quad \text{and} \quad \hat{F}(x) = x(\theta_1 \Psi)(x).$$

PROOF. By our assumption, on account of Lemma 2, and by (22)-(23), the form ϑ is regular and so is semiclassical of class $s_\theta \leq s_w + 2$. Let c be a root of E such that $c \neq 1$. According to (23) we get $c\Phi(c) = 0$. If $c \neq 0$, then c is a root of Φ. We suppose $E'(c) + F(c) = 0$. From (24) we obtain $E'(x) + \Psi(c) = 0$ and $\langle \vartheta, \theta_0^2 E + \theta_0 F \rangle = \frac{1}{\lambda} (c - 1)^2 \langle w, \theta_0 \Psi + \theta_0^2 \Phi \rangle \neq 0$, because w is semiclassical and so satisfies (9). If $c = 0$ and $\Phi(0) \neq 0$, then $E'(0) + F(0) = -\Phi(0) \neq 0$ from (23). If $c = 0$ and $\Phi(0) = 0$, then $E'(0) + F(0) = 0$. We are led to the following: When $\Phi'(0) + \Psi(0) = 0$, we get $\langle \vartheta, \theta_0^2 E + \theta_0 F \rangle = \frac{1}{\lambda} \langle w, \theta_0 \Psi + \theta_0^2 \Phi \rangle \neq 0$ from (24a). When $\Phi'(0) + \Psi(0) \neq 0$ and because $\lambda \neq \lambda_{-1}$, then according to (24a) with $c = 0$, we obtain $\langle \vartheta, \theta_0^2 E + \theta_0 F \rangle \neq 0$. Therefore equation (6) is not simplified by $x - c$ for $c \neq 1$. Next, from (23) we have $E'(1) + F(1) = -\Phi(1).

a) If $\Phi(1) \neq 0$, then $E'(1) + F(1) \neq 0$ and the equation (22) cannot be simplified. This means that

$$s_\theta = \max(\deg E - 2, \deg F - 1) = \max(\deg \Phi - 2, \deg \Psi - 1) = s_w + 2.$$

b) If $\Phi(1) = 0$, then $E'(1) + F(1) = 0$ and $\langle \vartheta, \theta_0^2 E + \theta_0 F \rangle = 0$ from (24). Therefore (22) can be simplified by $x - 1$. After simplification, it becomes $\langle \tilde{E}\vartheta \rangle' + \tilde{F}\vartheta = 0$, with $E(x) = x\Phi(x)$ and $F(x) = x(\Psi(x) - (\theta_1 \Phi)(x))$. We have $E'(1) + F(1) = \Psi(1)$. When $\Psi(1) \neq 0$, the above functional equation is not simplified. Consequently, $s_\theta = \max(\deg E - 2, \deg F - 1) = s_w + 1$.

c) If $\Phi(1) = 0$ and $\Psi(1) = 0$, then $E'(1) + \hat{F}(1) = \Psi(1) = 0$. By virtue of (18) and (6) we get $\langle \vartheta, \theta_0^2 E + \theta_1 \hat{F} \rangle = \frac{1}{\lambda} \langle w, \Psi \rangle = 0$. Therefore (34) is simplified by $x - 1$, and ϑ fulfills $\langle \tilde{E}\vartheta \rangle' + \tilde{F}\vartheta = 0$, where $E(x) = x(\theta_1 \Phi)(x)$ and $\hat{F}(x) = x(\theta_1 \Psi)(x)$. If 1 is a root of $\theta_1 \Phi$, then $\Phi'(1) + \Psi(1) = 0$. Assuming that $E'(1) + \hat{F}(1) = 0$, a simple calculation gives $\langle \vartheta, \theta_0^2 E + \theta_1 \hat{F} \rangle = \frac{1}{\lambda} \langle w, \theta_1 \Psi + \theta_1^2 \Phi \rangle \neq 0$ since w is a semiclassical of class 1 satisfying (9). Hence the functional equation $\langle \tilde{E}\vartheta \rangle' + \tilde{F}\vartheta = 0$ is not simplified and $s_\theta = \max(\deg E - 2, \deg F - 1) = s_w$.

2 Main Results

In the sequel we deal with the semiclassical sequence $\{W_n\}_{n \geq 0}$ of class one satisfying (10). Its corresponding regular form w is then semiclassical of class $s_w = 1$ fulfilling the functional equation (6) with $0 \leq \deg \Phi \leq 3$ and $1 \leq \deg \Psi \leq 2$.
2.1 Characterization of the Polynomials Φ and Ψ

We can usually decompose the polynomials Φ and Ψ through their odd and even parts. Set

$$
\Phi(x) = \phi(x^2) + x\varphi(x^2), \quad \Psi(x) = \psi(x^2) + x\omega(x^2),
$$

and

$$
(\theta_1, \Phi)(x) = \phi_1(x^2) + x\varphi_1(x^2) \quad \text{and} \quad (\theta_1, \Psi)(x) = \psi_1(x^2) + x\omega_1(x^2).
$$

PROPOSITION 1. Let w be a semiclassical form of class one satisfying (6) and $\{W_n\}_{n \geq 0}$ be its corresponding MOPS fulfilling (10).

a) If $\Phi(1) \neq 0$, then $\phi(x) = \varphi(x) = \frac{1}{2}(x\omega(x) - \psi(x))$.

b) If $\Phi(1) = 0$ and $\Psi(1) \neq 0$, then $\phi(x) = 0$ and $\varphi_1(x) = \omega(x)$.

c) If $\Phi(1) = 0$ and $\Psi(1) = 0$, then $\phi(x) + \varphi(x) = 0$ and $\psi(x) + x\omega(x) = 0$.

PROOF. Set

$$
\tilde{E}(x) = \tilde{E}_c(x^2) + x\tilde{E}_o(x^2); \quad \tilde{F}(x) = \tilde{F}_c(x^2) + x\tilde{F}_o(x^2).
$$

a) $\Phi(1) \neq 0$. According to (37)-(38) and from Theorem 1., we obtain $\tilde{E}_c(x) = x(\phi - \varphi)(x)$, $\tilde{E}_o(x) = x\varphi(x) - \phi(x)$, $\tilde{F}_c(x) = x(\psi - \omega - 2\varphi)(x)$, $\tilde{F}_o(x) = x\omega(x) - \psi(x) - 2\phi(x)$.

b) $\Phi(1) = 0$ and $\Psi(1) \neq 0$. Similar to a), we have $\tilde{E}_c(x) = x\varphi(x)$, $\tilde{E}_o(x) = \phi(x)$, $\tilde{F}_c(x) = x(\omega - \varphi_1)(x)$ and $\tilde{F}_o(x) = (\psi - \phi_1)(x)$. The form θ is of odd class, then $\tilde{E}_c = \tilde{F}_o = 0$. Hence the conclusion.

c) $\Phi(1) = 0$ and $\Psi(1) = 0$. In this case we have $\tilde{E}_c(x) = x\varphi_1(x)$, $\tilde{E}_o(x) = \phi_1(x)$, $\tilde{F}_c(x) = x\omega_1(x)$, $\tilde{F}_o(x) = \psi_1(x)$. Since θ is of odd class, $\tilde{F}_c = \tilde{F}_o = 0$. Therefore

$$
\varphi_1 = 0 \quad \text{and} \quad \psi_1 = 0.
$$

Moreover we can write $\Phi(x) = (x + 1)(\theta_1, \Phi)(x) = (x - 1)\phi_1(x^2)$ and $\Psi(x) = (x - 1)x\omega_1(x^2)$. So $\phi = -\phi_1$, $\varphi = -\phi_1$, $\omega = -\omega_1$ and $\psi = x\omega_1$. This gives the desired result.

THEOREM 2. Let w be a semiclassical form of class one satisfying (6) and $\{W_n\}_{n \geq 0}$ be its corresponding (MOPS) fulfilling (10). The functional equation (6) has only one solution given by

$$
\Phi(x) = x^3 - x, \quad \Psi(x) = ax^2 + x + c, \quad a \neq 0, \quad (w)_0 = (w)_1 = 1,
$$

with

$$
a + c + 1 \neq 0; \quad |a + 2| + |a + c + 3| \neq 0 \quad \text{and} \quad |a + 2| + |c - 3| \neq 0.
$$

PROOF. When $\deg \Phi \leq 2$ and $\deg \Psi = 2$, we consider $a \neq 0$, b and c as three complex numbers such that $\Psi(x) = ax^2 + bx + c$. From Proposition 1, we have the following.

i) If $\Phi(1) \neq 0$, then $\phi(x) = \varphi(x)$, and so $\Phi(x) = (x + 1)\phi(x^2)$ from (37). Because Φ is a monic polynomial of degree at most two, then necessarily $\phi(x) = 1$. In addition, we have $x\omega(x) - \psi(x) = 2$. This implies that $a = b$ and $c = -2$. Thus $\Phi(x) = x + 1$ and $\Psi(x) = ax^2 + ax - 2; a \neq 0$. According to equation (6), we have $\langle w, \Psi(x) \rangle = \langle w, \Phi(x) \rangle = 0$. Therefore $\langle w, \Psi(x) \rangle = 0$ for all $\Psi(x)$. Hence $\Psi(x) = ax^2 + bx + c; a \neq 0$ and $\langle w, \Phi(x) \rangle = 0$. Thus $\Phi(x) = x^2 + bx + c; a \neq 0$. Hence $\Phi(x) = x^2 - x; a \neq 0$. This gives the desired result.
\[
\langle w, x \Psi(x) - \Phi(x) \rangle = 0. \text{ Then } \langle w, ax^2 + ax - 2 \rangle = \langle w, ax^3 + ax^2 - 3x - 1 \rangle = 0. \text{ It is equivalent to }
\]
\[
a(\gamma_1 + 2) - 2 = 0 \quad \text{and} \quad a(\gamma_1 + 1) - 2 = 0,
\]
(41)
since \(\langle w, x \rangle = 1\) and \(\langle w, x^3 \rangle = \langle w, x^2 \rangle = \gamma_1 + 1\). It is easy to see from (41) that \(a = 0\), that is a contradiction with \(\deg \Psi = 2\).

ii) If \(\Phi(1) = 0\) and \(\Psi(1) \neq 0\), then \(\phi(x) = 0\). Therefore \(\Phi(x) = x\), because \(\Phi\) is monic and \(\deg \Phi \leq 2\). This contradicts \(\Phi(1) = 0\).

iii) If \(\Phi(1) = 0\) and \(\Psi(1) = 0\), then \(\Phi(x) = x - 1\) and \(\Psi(x) = a(x^2 - x)\) with \(a \neq 0\). Writing \(\langle w, \Psi(x) \rangle = \langle w, a(x^2 - x) \rangle = 0\), then \(a\gamma_1 = 0\) and so \(\gamma_1 = 0\). It is a contradiction, by virtue of the regularity of the form \(w\).

When \(\deg \Phi = 3\), we obtain \(\deg \phi \leq 1\) and \(\deg \varphi = 1\) from (37). According to Proposition 1, we have the following.

i) If \(\Phi(1) \neq 0\), then \(\phi(x) = \varphi(x)\) and \(\psi(x) = -2\varphi(x) + x\varphi(x)\). We obtain \(\Phi(x) = (x + 1)\varphi(x)\) and \(\Psi(x) = (x^2 + x)\varphi(x) - 2\varphi(x^2)\). Therefore \(\omega\) is a constant polynomial and \(\varphi\) is a monic polynomial of degree one since \(\deg \Phi \leq 2\) and \(\deg \Psi = 3\). Denoting by \(\varphi(x) = x + d\) and \(\omega(x) = e\). We write \(\Phi(x) = (x + 1)(x^2 + d)\) and \(\Psi(x) = (x^2 + x)\varphi(x) - 2\varphi(x^2)\).

Above, we have \(\langle w, \Psi \rangle = \langle w, x \Psi(x) - \Phi(x) \rangle = 0\). It follows \((e - 2)(\gamma_1 + 1) + e - 2d = 0\) and \((e - 2)(\gamma_1 + 1) - 2d = 0\). Hence \(e = 0\) and \(\gamma_1 + d + 1 = 0\). Again, according to equation (6), we have \(\langle (\Phi(x)w)' + \Psi(x)w, x^2 \rangle = 0\), then \(\langle w, x^2(x + d) \rangle = 0\). Since \(x^2 = W_2(x) + \gamma_1 + 1\), we then obtain \(\langle w, (W_2(x) + \gamma_1 + 1)W_2(x) \rangle = 0\). This gives \(\langle w, W_2(x) \rangle = 0\). It is a contradiction with the orthogonality of \(\{W_n\}_{n \geq 0}\).

ii) If \(\Phi(1) = 0\) and \(\Psi(1) = 0\), then \(\phi(x) = -\varphi(x)\) and \(\psi(x) = -x\varphi(x)\). Therefore \(\Psi(x) = (x - x^2)\varphi(x)\), and on account of \(1 \leq \deg \Psi \leq 2\), \(\deg \psi = 0\). Denoting by \(\varphi(x) = a_1\), where \(a_1 \in \mathbb{C} \setminus \{0\}\), since \(\langle w, \Psi \rangle = \langle w, a_1(x - x^2) \rangle = 0\), we have \(a_1\gamma_1 = 0\). It is a contradiction.

iii) If \(\Phi(1) = 0\) and \(\Psi(1) \neq 0\), then \(\phi(x) = 0\) and \(\omega(x) = \varphi_1(x)\). So \(\Phi(x) = x(x^2 - 1)\) and \(\Psi(x) = ax^3 + x + c\). If \(a = 0\), then \(c + 1 = 0\), since \(\langle w, \Psi \rangle = 0\). Thus \(\Psi(x) = x - 1\) which contradicts \(\Psi(1) \neq 0\). Necessarily \(a \neq 0\). Moreover the form \(w\) is of class one, we shall have the condition (9) with \(Z_\Phi = \{-1, 0, 1\}\), which leads to relation (40).

2.2 The Computation of \(\gamma_{n+1}\)

We will study the form \(w\) given in Theorem 2. Denoting by \(\alpha = \frac{1}{2}(c - 1)\) and \(\beta = -\frac{1}{2}(a + c + 3)\). The form \(w\) fulfills the following equation

\[
(x(x^2 - 1)w)' + (-2(\alpha + \beta + 2)x^2 + x + 2\alpha + 1)w = 0,
\]
(42)
where

\[
|\alpha + \beta + 1| + |\alpha| \neq 0, \quad \beta + 1 \neq 0, \quad |\alpha + \beta + 1| + |\beta| \neq 0, \quad \alpha + \beta + 2 \neq 0.
\]
(43)

Applying the operator \(\sigma\) in (42) and on account of (2) and (3), we get

\[
((x^2 - x)w)' + (-\alpha + \beta + 2)x + \alpha + 1)u = 0, \quad \langle u \rangle = 1.
\]
(44)
Multiplying (44) by \(x - 1 \), we obtain the functional equation satisfied by the form \(v \)

\[
\left((x^2 - x)v'\right) + (- (\alpha + \beta + 3)x + \alpha + 2)v, \quad (v)_0 = 1.
\]

(45)

Therefore the forms \(u \) and \(v \) are classical. Moreover from a suitable shifting, we obtain

\[
u = \left(\tau_{-\frac{1}{2}} \circ h_{\frac{1}{2}}\right) \mathcal{J}(\alpha, \beta); \quad u = \left(\tau_{\frac{1}{2}} \circ h_{-\frac{1}{2}}\right) \mathcal{J}(\alpha, \beta + 1).
\]

(46)

Where \(\mathcal{J}(\alpha, \beta) \) is the Jacobi form of parameters \(\alpha \) and \(\beta \) satisfying the following functional equation

\[
\left((x^2 - 1)\mathcal{J}(\alpha, \beta)\right)' + (- (\alpha + \beta + 2)x + \alpha - \beta) \mathcal{J}(\alpha, \beta) = 0, \quad (\mathcal{J}(\alpha, \beta))_0 = 1.
\]

It is regular if and only if \(\alpha \neq -n, \quad \beta \neq -n, \quad \alpha + \beta \neq -n, \quad n \geq 1 \). Moreover, the coefficients of its corresponding orthogonal polynomials \(\{P_n^{(\alpha, \beta)}\}_{n \geq 0} \) are given by [1]

\[
\begin{align*}
\beta_n^{(\alpha, \beta)} &= \frac{\alpha^2 - \beta^2}{(2n + \alpha + \beta + 3)(2n + \alpha + \beta + 2)}, \quad n \geq 0, \\
\gamma_{n+1}^{(\alpha, \beta)} &= 4 \frac{(n+1)(n+\alpha+\beta+1)(n+\alpha+1)(n+\beta+1)}{(2n+\alpha+\beta+2)(2n+\alpha+\beta+1)}, \quad n \geq 0.
\end{align*}
\]

(47)

PROPOSITION 2. Let \(w \) be the form of class one satisfying (42). The coefficients of its corresponding (MOPS) \(\{W_n\}_{n \geq 0} \) are given by

\[
\gamma_{2n+1} = - \frac{(n+\alpha+\beta+1)(n+\beta+1)}{(2n+\alpha+\beta+2)(2n+\alpha+\beta+1)}, \quad n \geq 0, \\
\gamma_{2n+2} = - \frac{(n+\alpha+\beta+2)(n+\alpha+1)(n+\beta+1)}{(2n+\alpha+\beta+3)(2n+\alpha+\beta+2)}, \quad n \geq 0.
\]

(48)

PROOF. Let \(\{P_n\}_{n \geq 0} \) be a (MOPS) with respect to the regular form \(u \) and \(\{P^*_n\}_{n \geq 0} \) be the (MOPS) with respect to the regular form \(v \). From (46), we have

\[
P_n(x) = 2^{-n} P_n^{(\alpha, \beta)}(2x - 1), \quad P^*_n(x) = 2^{-n} P_n^{(\alpha, \beta + 1)}(2x - 1), \quad n \geq 0.
\]

(49)

By comparing with (13), (47) and using (8) we get

\[
\begin{align*}
\gamma_{2n+1} \gamma_{2n+2} &= \frac{(n+1)(n+\alpha+\beta+1)(n+\alpha+1)(n+\beta+1)}{(2n+\alpha+\beta+2)(2n+\alpha+\beta+1)(2n+\alpha+\beta+3)}, \quad n \geq 0, \\
\gamma_{2n+2} \gamma_{2n+3} &= \frac{(n+\alpha+\beta+2)(n+\alpha+1)(n+\alpha+\beta+1)}{(2n+\alpha+\beta+3)(2n+\alpha+\beta+2)(2n+\alpha+\beta+4)}, \quad n \geq 0.
\end{align*}
\]

(50)

This gives

\[
\frac{\gamma_{2n+3}}{\gamma_{2n+1}} = \frac{(n+\alpha+\beta+2)(n+\alpha+1)(n+\beta+1)(n+\alpha+\beta+1)(2n+\alpha+\beta+3)(2n+\alpha+\beta+4)}{(n+\alpha+\beta+1)(n+\beta+1)(2n+\alpha+\beta+1)(2n+\alpha+\beta+2)}, \quad n \geq 0.
\]

By virtue of (50) and from a simple calculation we deduce (48).

REMARK 1. In particular, when \(\alpha = 2^{-1} \) and \(\beta = -2^{-1} \), we obtain the so-called second-order self-associated orthogonal sequence, see [4].
2.3 Integral Representation

Regarding the integral representation of the form w given by (42), we start with the representation of the form u. For $\Re(\alpha) > -1$ and $\Re(\beta) > -1$, we have for all $f \in \mathcal{P}$ [1]

$$
\langle u, f \rangle = \left\langle \mathcal{J}(\alpha, \beta), f \left(\frac{x + 1}{2} \right) \right\rangle = \frac{1}{2^{\alpha+\beta+1}} \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_{-1}^{1} (1 + x)^{\alpha}(1 - x)^{\beta} f \left(\frac{x + 1}{2} \right) dx.
$$

Using the substitution $t = \frac{x + 1}{2}$, we get

$$
\langle u, f \rangle = \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_{0}^{1} t^{\alpha}(1 - t)^{\beta} f(t) dt, \ f \in \mathcal{P}. \quad (51)
$$

Next, we decompose the polynomial f as follows:

$$
f(x) = f_1(x^2) + (x - 1)f_2(x^2).
$$

From the fact that $(x - 1)w$ is antisymmetric, we obtain $\langle w, f \rangle = \langle u, f_1 \rangle$. Using again the substitution $t = y^2$ in (51), we obtain

$$
\langle w, f \rangle = 2 \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_{0}^{1} y^{2\alpha+1}(1 - y^2)^{\beta} f_1(y^2) dy.
$$

Since for $\Re(\alpha) > -\frac{1}{2}$ and $\Re(\beta) > -1$, $\int_{1}^{1} y \ | \ y \ |^{2\alpha-1} (1 - y^2)^{\beta} f_1(y^2) dy = 0$, the above representation may be written as follows

$$
\langle w, f \rangle = \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_{-1}^{1} (y^2 + y) \ | \ y \ |^{2\alpha-1} (1 - y^2)^{\beta} f_1(y^2) dy.
$$

Moreover, we have

$$
\int_{-1}^{1} (y^2 + y) \ | \ y \ |^{2\alpha-1} (1 - y^2)^{\beta} (y - 1)f_2(y^2) dy = 0.
$$

Consequently, we get an integral representation of the form w for all $f \in \mathcal{P}$, $\Re\alpha > -\frac{1}{2}$, $\Re\beta > -1$,

$$
\langle w, f \rangle = \frac{\Gamma(\alpha + \beta + 2)}{\Gamma(\alpha + 1)\Gamma(\beta + 1)} \int_{-1}^{1} (y^2 + y) \ | \ y \ |^{2\alpha-1} (1 - y^2)^{\beta} f(y) dy.
$$

References

A Family of Semiclassical Orthogonal Polynomials

