Meromorphic Solutions Of Conjugacy Equations*

Yong-Guo Shi†, Li Chen‡

Received 15 April 2011

Abstract

This paper characterizes the relation between a conjugacy equation \(\varphi \circ f = g \circ \varphi \) and a permutable functional equation \(\phi \circ f = f \circ \phi \) where \(f : X \to X, g : Y \to Y \) are given self-maps, and \(\varphi, \phi \) are unknown maps. When \(f \) and \(g \) are Möbius transformations, we prove that there exists a bijective meromorphic solution of a conjugacy equation if and only if \(f \) and \(g \) have the same normal form. Moreover, every bijective meromorphic solution is expressed by a permutable meromorphic function with their normal form.

1 Introduction

Let \(X \) and \(Y \) be topological spaces, and let \(f : X \to X \) and \(g : Y \to Y \) be continuous maps. We say that \(f : X \to X \) is topologically conjugate (or simply conjugate) to \(g : Y \to Y \) if there exists a homeomorphism \(\varphi : X \to Y \) satisfying the conjugacy equation (cf. [1,2])

\[
\varphi \circ f = g \circ \varphi,
\]

where \(\circ \) denotes the composition of maps. For instance,

\[
\varphi(z + 1) = \frac{\varphi(z)}{\varphi(z) + 1},
\]

once arose in mathematical competitions or applied mathematics. Taking \(f(z) = z + 1 \) and \(g(z) = z / (z + 1) \), Eq.(2) becomes a conjugacy equation.

In particular, when \(g = f \) and \(\varphi \) is replaced with \(\phi \), the conjugacy equation (1) becomes

\[
\phi \circ f = f \circ \phi,
\]

which is called a permutable functional equation. \(f \) is said to be permutable with \(\phi \) if the relation (3) holds. Permutable functions and close form solutions of functional equations have been extensively studied by many authors (see [3-9]). The monograph [2] collects many results including analytic solutions on a neighborhood of the origin of

*Mathematics Subject Classifications: 30D05, 15A24.

†Key Laboratory of Numerical Simulation of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, P. R. China. Email: scumat@163.com.

‡Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China. Corresponding author: scuchenli@126.com.

This paper characterizes the relation between Eq.(1) and Eq.(3) for two given \(f : X \to X \) and \(g : Y \to Y \). When \(f \) and \(g \) are Möbius transformations, we prove that there exists a bijective meromorphic solution of a conjugacy equation if and only if \(f \) and \(g \) have the same normal form. Moreover, every bijective meromorphic solution is expressed by a permutable meromorphic function with their normal form. Some examples are illustrated to apply these results.

2 Preliminaries

The following lemma states a relation between permutable functional equation and conjugacy equation.

Lemma 1. Let \(\varphi_0 : X \to Y \) be a particular solution of Eq.(1). Then every solution of (1) is given by \(\varphi = \varphi_0 \circ \phi \), where \(\phi : X \to X \) is a solution of Eq.(3).

Proof. Since \(\varphi_0 \) is a solution of Eq.(1), we have \(g \circ \varphi_0 = \varphi_0 \circ f \). For any solution \(\phi : X \to X \) of Eq.(3), let \(\varphi = \varphi_0 \circ \phi \), then

\[
\varphi \circ f = \varphi_0 \circ \phi \circ f = \varphi_0 \circ f \circ \phi = g \circ \varphi_0 \circ \phi = g \circ \varphi
\]

This completes the proof.

A Möbius transformation on the complex plane is given by

\[
\ell(z) = \frac{az + b}{cz + d}
\]

where \(a, c, b, d \) are any complex numbers satisfying \(ad - bc \neq 0 \). In case \(c \neq 0 \), this definition is extended to the whole Riemann sphere \(\hat{\mathbb{C}} = \mathbb{C} \cup \{ \infty \} \) by defining \(\ell(-d/c) = \infty \) and \(\ell(\infty) = a/c \), if \(c = 0 \) we define \(\ell(\infty) = \infty \). This turns \(\ell \) into a bijective meromorphic function from \(\hat{\mathbb{C}} \) to itself.

The set of all Möbius transformations forms a group under composition called the Möbius group. It is the automorphism group of the Riemann sphere, denoted by \(\text{Aut}(\hat{\mathbb{C}}) \).

Let \(GL_2(\mathbb{C}) \) denote the group of all non-singular \(2 \times 2 \) matrices in the field \(\mathbb{C} \). Define \(h : GL_2(\mathbb{C}) \to \text{Aut}(\hat{\mathbb{C}}) \) by

\[
h\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \frac{az + b}{cz + d}.
\]
The map h is surjective, but not injective because $h(\mu A) = h(A)$ for all nonzero $\mu \in \mathbb{C}$. Define an equivalence in $GL_2(\mathbb{C})$ with $A \sim B$ if and only if $A = \mu B$ and consider the corresponding quotient space $\tilde{GL}_2(\mathbb{C}) := GL_2(\mathbb{C})/\sim$. Then the induced map
\[\tilde{h} : \tilde{GL}_2(\mathbb{C}) \to \text{Aut}(\tilde{\mathbb{C}}) \]
is bijective.

The following is a well-known fact, which states that the composition of two Möbius transformations corresponds to the multiplication of their corresponding matrices.

Lemma 2. Suppose that A_1, A_2 are the corresponding matrices of $\ell_1, \ell_2 \in \text{Aut}(\tilde{\mathbb{C}})$, respectively. Then
\[\ell_1 \circ \ell_2 = h(A_1) \circ h(A_2) = h(A_1A_2). \]

In what follows, we consider Eq.(1) and Eq.(3) where $f, g \in \text{Aut}(\tilde{\mathbb{C}})$.

Using the induced mapping \tilde{h} on the quotient space $\tilde{GL}_2(\mathbb{C})$, the following lemma gives a relation between solutions of the permutable functional equation (3) and a matrix equation
\[XA = AX, \quad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}. \] \hspace{1cm} (6)

Lemma 3. Let A be a corresponding matrix of $f \in \text{Aut}(\tilde{\mathbb{C}})$. Then every bijective meromorphic solution of Eq.(3) is given by
\[\phi(z) = \tilde{h}(X), \]
where X is a solution of Eq.(6).

Proof. It is known from the proof of [1, Theorem 11.1.1] that if ϕ is a bijective meromorphic function, then $\phi \in \text{Aut}(\tilde{\mathbb{C}})$. So assume X is a corresponding matrix of ϕ. So we see that
\[\tilde{h}(X) \circ \tilde{h}(A) = \tilde{h}(A) \circ \tilde{h}(X) \]
It follows from Lemma 2 that
\[\tilde{h}(XA) = \tilde{h}(AX). \]
Since \tilde{h} is bijective, the matrix equation $XA = AX$ on the quotient space $\tilde{GL}_2(\mathbb{C})$ is equivalent to Eq.(3). Thus every bijective meromorphic solution of Eq.(3) is given by
\[\phi(z) = \tilde{h}(X), \]
The proof is complete.

If $A \in GL_2(\mathbb{C})$, there exists a nonzero constant $\mu \in \mathbb{C}$ such that μA can be transformed into one of the three Jordan canonical forms
\[J_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad J_2 = \begin{bmatrix} \lambda & 0 \\ 0 & 1 \end{bmatrix}, \quad J_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \]
where $\lambda \in \mathbb{C}$ is a constant and $\lambda \neq 0, 1$. By Lemmas 2 and 3, it suffices to discuss the case that A can be transformed into one of the above three Jordan canonical forms.
For each $j = 1, 2, 3$ we let A_j denote the collection of matrices A which are similar to J_j.

Lemma 4. Let Q be an invertible matrix such that $Q^{-1}AQ$ is of a Jordan canonical form. Then Eq.(3) has (i) all Möbius transformations as bijective meromorphic solutions when $A \in A_1$; (ii) infinitely many bijective meromorphic solutions

$$\phi(z) = \hat{h} \left(Q \begin{bmatrix} c_1 & 0 \\ 0 & c_2 \end{bmatrix} Q^{-1} \right),$$

where c_1, c_2 are both arbitrary nonzero complex numbers, when $A \in A_2$; (iii) infinitely many bijective meromorphic solutions

$$\phi(z) = \hat{h} \left(Q \begin{bmatrix} c_1 & c_2 \\ 0 & c_1 \end{bmatrix} Q^{-1} \right),$$

where c_1, c_2 are both arbitrary complex numbers and $c_1 \neq 0$, when $A \in A_3$.

Proof. Case (i). When $Q^{-1}AQ = J_1$, $f(z) = z$, which commutes with arbitrary functions.

Case (ii). $Q^{-1}AQ = J_2$. All matrices commuting with J_2 are of the form

$$C_2 = \begin{bmatrix} c_1 & 0 \\ 0 & c_2 \end{bmatrix},$$

where c_1, c_2 are both arbitrary constants such that C_2 is invertible, i.e., $c_1c_2 \neq 0$. It implies that all matrices commuting with $A = QJ_2Q^{-1}$ are of the form $P_2 = QC_2Q^{-1}$. Thus $X = P_2$ is the general solution of Eq.(6). By Lemma 3, the result (8) follows.

Case (iii). $Q^{-1}AQ = J_3$. All matrices commuting with J_3 are of the form

$$C_3 = \begin{bmatrix} c_1 & c_2 \\ 0 & c_1 \end{bmatrix},$$

where c_1, c_2 are both arbitrary constants such that C_3 is invertible, i.e., $c_1 \neq 0$. It implies that all matrices commuting with $A = QJ_3Q^{-1}$ are of the form $P_3 = QC_3Q^{-1}$. Thus $X = P_3$ is the general solution of Eq.(6). By Lemma 3, the result (9) follows.

We give an example to illustrate the use of the formulae obtained above.

Example 1. Consider $f(z) = \frac{7z - 3}{18z - 8}$, which corresponds to

$$A = \begin{bmatrix} 7 & -3 \\ 18 & -8 \end{bmatrix}.$$

Choosing

$$Q = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},$$

we have

$$Q^{-1}AQ = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}.$$
Then $A \in A_2$. From (8), we see that Eq.(3) has infinitely many bijective meromorphic solutions

$$
\phi(z) = \tilde{h}\left(Q\begin{bmatrix} c_1 & 0 \\ 0 & c_2 \end{bmatrix}Q^{-1}\right) = \tilde{h}\left(\begin{bmatrix} -2c_1 + 3c_2 & c_1 - c_2 \\ -6c_1 + 6c_2 & 3c_1 - 2c_2 \end{bmatrix}\right) = (-2c_1 + 3c_2)z + c_1 - c_2,
$$

$$
= (\frac{-2 + 3\mu}{-6 + 6\mu})z + 1 - \mu
$$

$$
= (\frac{-2 + 3\mu}{-6 + 6\mu})z + 3 - 2\mu,
$$

where $\mu := c_2/c_1$ and $\mu \in \mathbb{C}$ is an arbitrary nonzero constant.

We consider normal forms of the Möbius group under $\text{Aut}(\tilde{\mathbb{C}})$-conjugacy.

Lemma 5. Under $\text{Aut}(\tilde{\mathbb{C}})$-conjugacy, the Möbius group has only three normal forms:

1. $e_1(z) = z$;
2. $e_2(z) = \lambda z$, $\lambda \neq 0, 1$;
3. $e_3(z) = z + 1$.

Proof. Suppose that $\ell \in \text{Aut}(\tilde{\mathbb{C}})$ corresponds to a matrix A which can be transformed into one of the three Jordan canonical forms in (7). So assume that the Jordan canonical form of A is J_i for some i. Then there exists a nonsingular 2×2 matrix Q such that $J_i = Q^{-1}AQ$. By Lemma 2, we have

$$
e_i(z) = \tilde{h}(J_i) = \tilde{h}(Q^{-1}AQ) = \tilde{h}(Q^{-1}) \circ \tilde{h}(A) \circ \tilde{h}(Q) = \tilde{h}^{-1}(Q) \circ \tilde{h}(A) \circ \tilde{h}(Q) = \tilde{h}^{-1}(Q) \circ \ell(z) \circ \tilde{h}(Q).
$$

Since $\tilde{h}^{-1}(Q), \tilde{h}(Q) \in \text{Aut}(\tilde{\mathbb{C}})$, $\ell(z)$ is conjugate to $e_i(z)$ under $\text{Aut}(\tilde{\mathbb{C}})$-conjugacy.

Obviously the three normal forms above are not conjugate to each other under $\text{Aut}(\tilde{\mathbb{C}})$-conjugacy. This completes the proof.

3 Conjugacy Equation

We have the following main result.

Theorem 1. Suppose that $f, g \in \text{Aut}(\tilde{\mathbb{C}})$. Then there exists a bijective meromorphic solution of Eq.(1) if and only if f and g have the same normal form. Moreover, suppose $\varphi_j \in \text{Aut}(\tilde{\mathbb{C}})$, $j = 1, 2$ satisfy

$$
\varphi_1^{-1} \circ f \circ \varphi_1 = \varphi_2^{-1} \circ g \circ \varphi_2 = e_i \quad \text{for some } i.
$$

Then every bijective meromorphic solutions of Eq.(1) is given by

$$
\varphi = \varphi_2 \circ \phi \circ \varphi_1^{-1},
$$

where ϕ is a bijective meromorphic solution of the equation $\phi \circ e_i = e_i \circ \phi$.

PROOF. By (10), we have $\varphi^{-1}_1 \circ f = e_i \circ \varphi^{-1}_1$ and $g \circ \varphi_2 = \varphi_2 \circ e_i$. For any bijective meromorphic solution ϕ of the equation $\phi \circ e_i = e_i \circ \phi$, let $\varphi = \varphi_2 \circ \phi \circ \varphi^{-1}_1$.

Then

$$
\varphi \circ f = \varphi_2 \circ \phi \circ \varphi^{-1}_1 \circ f = \varphi_2 \circ \phi \circ \varphi^{-1}_1 = \varphi_2 \circ e_i \circ \phi \circ \varphi^{-1}_1 = g \circ \varphi_2 \circ \phi \circ \varphi^{-1}_1 = g \circ \varphi.
$$

Conversely, if there exists a bijective meromorphic solution φ of Eq.(1), then $f = \varphi^{-1} \circ g \circ \varphi$. Therefore f and g have the same normal form. This completes the proof.

EXAMPLE 2. Consider Eq.(2). Choosing $\varphi_0(z) = 1/z$, we have $\varphi_0 \circ f = g \circ \varphi_0$. By Lemma 1, it suffices to solve $\phi \circ f = f \circ \phi$. In fact, the general solution of $\phi(z + 1) = \phi(z) + 1$ is given by $\phi(z) = \Theta(z) + z$, where $\Theta(z) = \Theta(z + 1)$ is an arbitrary periodic function with unit period. By Lemma 1, the general solution of Eq.(2) is given by

$$
\varphi(z) = \varphi_0 \circ \phi(z) = \frac{1}{\Theta(z) + z}.
$$

Remark that Eq.(2) was discussed in [2, pp.390-391, Theorem 10.1.2]. Their result shows that the only convex or concave solutions of Eq.(2) are $\varphi = 0$ and $\varphi(x) = 1/(x + d)$, where $d \in \mathbb{R}$ is an arbitrary constant. Clearly they are two particular solutions.

EXAMPLE 3. Consider the functional equation

$$
\varphi \left(\frac{31z - 12}{70z - 27} \right) = \frac{43\varphi(z) - 24}{70\varphi(z) - 39}. \tag{11}
$$

Put

$$
f(z) = \frac{31z - 12}{70z - 27}, \quad g(z) = \frac{43z - 24}{70z - 39}.
$$

By Lemma 5, choose

$$
\varphi_1(z) = \frac{3z + 2}{7z + 5}, \quad \varphi_2(z) = \frac{3z + 4}{5z + 7}.
$$

Then $\varphi^{-1}_1 \circ f \circ \varphi_1(z) = \varphi^{-1}_2 \circ g \circ \varphi_2(z) = 3z$. From Lemma 4, all bijective meromorphic solutions of $\phi(3z) = 3\phi(z)$ are given by $\phi(z) = \mu z$, where $\mu \in \mathbb{C}$ is an arbitrary nonzero constant. By Theorem 1, all bijective meromorphic solutions of Eq.(11) are given by

$$
\varphi(z) = \varphi_2 \circ \phi \circ \varphi^{-1}_1(z) = \frac{(15\mu - 28)z - 6\mu + 12}{(25\mu - 49)z - 10\mu + 21}.
$$

Acknowledgment. The research is supported by NSFC # 11101295.
References

