An Answer To The Conjecture Of Satnoianu

Yu Miao, Shou Fang Xu, Ying Xia Chen

Received 23 September 2008

Abstract

In this short paper, we obtain an answer to the conjecture of Satnoianu by a simpler method in the view of probability theory. The conditions of our results are independent with some known answers.

1 Introduction

In [2], Mazur proposed the open problem: if \(a, b, c\) are positive real numbers such that \(abc > 2^9\), then

\[
\frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+b}} + \frac{1}{\sqrt{1+c}} \geq \frac{3}{\sqrt{1+abc}}.
\]

(1)

In fact, in 2001, Satnoianu [3] has studied the following inequality

\[
\sum_{cyclic} \frac{a}{\sqrt{a^2 + \lambda bc}} \geq \frac{3}{\sqrt{1 + \lambda}} \quad (a, b, c > 0, \lambda \geq 8).
\]

(2)

In addition, Satnoianu proposed the following inequality as a conjecture

\[
\sum_{i=1}^{n} \left(\frac{x_i^{n-1} + \lambda \prod_{k \neq i} x_k}{x_i^{n-1} + \lambda} \right)^{\frac{1}{n-1}} \geq n(1 + \lambda)^{-\frac{1}{n-1}}.
\]

(3)

Shortly after the proposed conjecture, Janous [1] gave the proof of the inequality (3) by means of Lagrange’s method of multipliers and Satnoianu [4] obtained a generalized version of inequality (3) as follows

\[
\sum_{i=1}^{n} \left(\frac{x_i^{n-1} + \lambda \prod_{k \neq i} x_k}{\alpha x_i^{n-1} + \beta \prod_{k \neq i} x_k} \right)^{\frac{1}{n-1}} \geq n(\alpha + \beta)^{-\frac{1}{n-1}},
\]

(4)

*Mathematics Subject Classifications: 26D15
†College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, 453007, P. R. China. E-mail: yumiao728@yahoo.com.cn
‡Department of mathematics, Xinxiang University, Xinxiang, Henan, 453000, P. R. China
§College of Mathematics and Information Science, Pingdingshan University, Pingdingshan, Henan, 467000, P. R. China
where $n \geq 2$, $x_i > 0$, $i = 1, 2, \ldots, n$, $\alpha, \beta > 0$ and $\beta \geq (n^{n-1} - 1)\alpha$. Recently, Wu [5] established the following more generalized inequality

$$\sum_{i=1}^{n} \left(\frac{x_i^q}{\alpha x_i^q + \beta \prod_{k=1}^{n} x_k^{q/n}} \right)^{\frac{1}{p}} \geq n(\alpha + \beta)^{-\frac{1}{p}},$$

(5)

where $\alpha, \beta, x_i (i = 1, 2, \ldots, n)$ are positive real numbers, $q \in \mathbb{R}$, and $p < 0$, or $p > 0$ with $\beta \geq (n^{\max\{p,1\}} - 1)\alpha$.

If we rewrite the inequality (5) as

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{\alpha + \beta \exp \left(\frac{1}{n} \sum_{k=1}^{n} \log x_k^q - \log x_i^q \right) } \right)^{\frac{1}{p}} \geq (\alpha + \beta)^{-\frac{1}{p}},$$

(6)

then it is easy to see that (6) is equivalent to

$$\mathbb{E} \left(\frac{X^\alpha X + \beta \exp \left\{ \mathbb{E} \log X \right\} }{\alpha X + \beta \exp \left\{ \mathbb{E} \log X \right\} } \right)^{\frac{1}{p}} \geq (\alpha + \beta)^{-\frac{1}{p}},$$

(7)

where X is a random variable taking values $x_1^q, x_2^q, \ldots, x_n^q$ with the probability $P(X = x_i^q) = \frac{1}{n}$ and $\mathbb{E}(X)$ denotes the mathematical expectation of X. In fact, X can be any positive random variable. Hence we could generalize the conjecture of Satnoianu as: "Under what conditions does the inequality (7) holds?"

2 Main Results

Before our works, we need give the following useful

LEMMA 1. Let $f(x) = (a + bx^p)^p$, where $a, b > 0$, $x \in \mathbb{R}$. If $p > 0$ or if $p < 0$ with $pbe^x + a \leq 0$, then $f(x)$ is a convex function.

PROOF. The method is elementary. Since a twice differentiable function of one variable is convex on an interval if and only if its second derivative is non-negative and

$$f'(x) = pb(a + bx)^{p-1}e^x,$$

$$f''(x) = p(p-1)b^2(a + bx)^{p-2}e^{2x} + pb(a + bx)^{p-1}e^x = pbe^x(a + bx)^{p-2}[(p-1)be^x + (a + bx)] = pbe^x(a + bx)^{p-2}[pbe^x + a],$$

the desired result is easy to be obtained.

PROPOSITION 1. Let random variable $X > 0$ a.e. and $\alpha, \beta > 0$. If $p < 0$ or if $p > 0$ with $X \leq \beta e^{\mathbb{E} \log X / (\alpha p)}$ a.e., then we have

$$\mathbb{E} \left(\frac{X}{\alpha X + \beta \exp \left\{ \mathbb{E} \log X \right\} } \right)^{\frac{1}{p}} \geq (\alpha + \beta)^{-\frac{1}{p}}.$$
PROOF. Let \(Y = -\log X \), then (8) is equivalent to

\[
E \left(\frac{1}{\alpha + \beta e^{-\alpha e^X}} \right)^{\frac{1}{p}} \geq (\alpha + \beta)^{-\frac{1}{p}}.
\]

(9)

By Lemma 1. and Jensen’s inequality, the proof is easy to be obtained.

From the above proposition, we have the following result and the proof is easy.

THEOREM 1. Let \(\alpha, \beta > 0 \) and \(X \) be a discrete random variable taking positive numbers \(x_1, x_2, \ldots, x_n \) with \(P(X = x_i) = a_i \), where \(\sum_{i=1}^{n} a_i = 1 \). In addition, let \(M = \max\{x_i, 1 \leq i \leq n\} \) and \(m = \min\{x_i, 1 \leq i \leq n\} \). If \(p < 0 \) or if \(p > 0 \) with \(M/m \leq \beta/((\alpha p) \), then we have

\[
\sum_{i=1}^{n} a_i \left(\frac{x_i}{\alpha x_i + \beta \prod_{k=1}^{n} x_k^{a_k}} \right)^{\frac{1}{p}} \geq (\alpha + \beta)^{-\frac{1}{p}}.
\]

(10)

In particular, if \(a_1 = a_2 = \cdots = a_n = \frac{1}{n} \), we have

\[
\sum_{i=1}^{n} \left(\frac{x_i}{\alpha x_i + \beta \prod_{k=1}^{n} x_k^{a_k}} \right)^{\frac{1}{p}} \geq n(\alpha + \beta)^{-\frac{1}{p}}.
\]

(11)

REMARK 1. By comparing the conditions of Theorem 1. with the ones of Wu in [5], we find that these assumptions are independent each other. In fact, the only difference is between “\(M/m \leq \beta/((\alpha p) \)” and “\(\beta \geq (n^{\max\{p,1\}} - 1)\alpha \)” from that we can not judge which condition is weaker than the other.

REMARK 2. For the infinite sequence \(\{x_i\}_{i=1}^{\infty} \), let \(\sum_{i=1}^{\infty} a_i = 1, M = \sup_{i \geq 1} x_i < \infty \) and \(m = \inf_{i \geq 1} x_i > 0 \), then by the same discussions as Theorem 1., we have

\[
\sum_{i=1}^{\infty} a_i \left(\frac{x_i}{\alpha x_i + \beta \prod_{k=1}^{\infty} x_k^{a_k}} \right)^{\frac{1}{p}} \geq (\alpha + \beta)^{-\frac{1}{p}}.
\]

(12)

The following result is the integral form of the conjecture of Satnoianu.

THEOREM 2. Let \(\alpha, \beta > 0 \) and \(X \) be a positive continuous random variable on \((0, \infty)\) with the probability density function \(f(x) \). If \(p < 0 \) or if \(p > 0 \) with \(X \leq \beta e^{E \log X}/(\alpha p) \) a.e., then we have

\[
\int_{0}^{\infty} \left(\frac{x}{\alpha x + \beta \exp \left\{ \int_{0}^{x} \log x f(x) dx \right\} } \right)^{\frac{1}{p}} f(x) dx \geq (\alpha + \beta)^{-\frac{1}{p}}.
\]

(13)

In particular, if \(X \) possesses uniform distribution on the support interval \([a, b]\), i.e., the probability density function of \(X \) is equal to \((b-a)^{-1}, x \in [a, b] \) and zero elsewhere. Then if \(b/a \leq \beta/(\alpha p) \), then we have

\[
\frac{1}{b-a} \int_{a}^{b} \left(\frac{x}{\alpha x + \beta \exp \left\{ \int_{a}^{x} \log x dx \right\} } \right)^{\frac{1}{p}} dx \geq (\alpha + \beta)^{-\frac{1}{p}}.
\]

(14)
References

