Some Sharp Simpson Type Inequalities And Applications∗

Yanxia Shi†, Zheng Liu‡

Received 31 July 2008

Abstract

Some sharp Simpson type inequalities are proved. Applications in numerical integration are also considered.

1 Introduction

Given a real function of a real variable, let us write

\[f(\alpha|\beta) := f(\alpha) + 4f\left(\frac{\alpha + \beta}{2}\right) + f(\beta). \]

In [1], Ujević proved the following interesting sharp classical Simpson type inequality.

THEOREM 1. Let \(f : [a, b] \rightarrow \mathbb{R} \) be an absolutely continuous function whose derivative \(f' \in L^2(a, b) \). Then

\[\left| \int_a^b f(x) \, dx - \frac{b-a}{6} f(a|b) \right| \leq \frac{(b-a)^{\frac{3}{2}}}{6} \sqrt{\sigma(f')}, \]

(1)

where \(\sigma(\cdot) \) is defined by

\[\sigma(f) = \| f \|_2^2 - \frac{1}{b-a} \left(\int_a^b f(t) \, dt \right)^2 \]

(2)

and

\[\| f \|_2 := \left[\int_a^b f^2(t) \, dt \right]^{\frac{1}{2}}. \]

∗Mathematics Subject Classifications: 26D15
†Department of Mathematics, School of Science, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
‡Institute of Applied Mathematics, School of Science, University of Science and Technology Liaoning, Anshan, Liaoning 114051, P. R. China
Inequality (1) is sharp in the sense that the constant $\frac{1}{6}$ cannot be replaced by a smaller one.

An application in numerical integration has been given as

Theorem 2. Let $\pi = \{x_0 = a < x_1 < \cdots < x_n = b\}$ be a given subdivision of the interval $[a, b]$ such that $h_i = x_{i+1} - x_i = h = \frac{b-a}{n}$ and let the assumptions of Theorem 1 hold. Then

$$\left| \int_a^b f(x) \, dx - \frac{h}{6} \sum_{i=0}^{n-1} f(x_i | x_{i+1}) \right| \leq \frac{b-a}{6n} \sigma_n(f) \leq \frac{b-a}{6\sqrt{n}} \omega_n(f),$$

where $\sigma_n(f)$ and $\omega_n(f)$ are defined by

$$\sigma_n(f) = \sum_{i=0}^{n-1} \sqrt{\frac{b-a}{n} \|f'\|^2 - |f(x_{i+1}) - f(x_i)|^2},$$

and

$$\omega_n(f) = [(b-a)\|f'\|^2 - \frac{1}{n}(f(b) - f(a))^2]^{\frac{1}{2}}.$$

Obviously, the inequality (3) seems as if it is complicated and not convenient to obtain the error bounds. Recently in [2] the inequality (3) has been revised and improved as

$$\left| \int_a^b f(x) \, dx - \frac{h}{6} \sum_{i=0}^{n-1} f(x_i | x_{i+1}) \right| \leq \left(\frac{b-a}{6n} \sqrt{\sigma(f')} \right).$$

In this paper, we will further derive some sharp Simpson type inequalities. Applications in numerical integration are also considered.

2 Two More Sharp Classical Simpson Type Inequalities

We begin with the following result.

Theorem 3. Let $f : [a, b] \rightarrow \mathbb{R}$ be such that f' is absolutely continuous on $[a, b]$ and $f'' \in L_2[a, b]$. Then we have

$$\left| \int_a^b f(x) \, dx - \frac{b-a}{6} f(a) |b| \right| \leq \frac{(b-a)^{\frac{3}{2}}}{12\sqrt{30}} \sqrt{\sigma(f'')}.$$

Inequality (4) is sharp in the sense that the constant $\frac{1}{12\sqrt{30}}$ cannot be replaced by a smaller one.

Proof. Let us define the function

$$S_2(x) := \begin{cases} \frac{(x-a)^2}{2} - \frac{(b-a)(x-a)}{6}, & x \in \left[a, \frac{a+b}{2} \right], \\ \frac{(x-b)^2}{2} + \frac{(b-a)(x-b)}{6}, & x \in \left(\frac{a+b}{2}, b \right). \end{cases}$$

(5)
Integrating by parts, we obtain
\[
\int_a^b S_2(x) f''(x) \, dx = \int_a^b f(x) \, dx - \frac{b-a}{6} f(a|b).
\]
(6)

By elementary calculus, we have
\[
\int_a^b S_2(x) \, dx = 0, \quad \int_a^b S_2^2(x) \, dx = \frac{(b-a)^5}{4320}.
\]
(7)

Thus from (6), (7) and (2), we can easily get
\[
\left| \int_a^b f(x) \, dx - \frac{b-a}{6} f(a|b) \right| = \left| \int_a^b S_2(x) f''(x) \, dx \right|
\leq \left(\int_a^b S_2^2(x) \, dx \right)^{\frac{1}{2}} \left\{ \int_a^b \left[f''(x) - \frac{f'(b) - f'(a)}{b-a} \right]^2 \, dx \right\}^{\frac{1}{2}}
= \left[\frac{(b-a)^5}{4320} \right]^{\frac{1}{2}} \left\{ \|f''\|_2^2 - \frac{[f'(b) - f'(a)]^2}{b-a} \right\}^{\frac{1}{2}}
= \frac{(b-a)^{\frac{5}{2}}}{12\sqrt{30}} \sqrt{\sigma(f'')}.
\]

We now suppose that (4) holds with a constant \(C > 0\) as
\[
\left| \int_a^b f(x) \, dx - \frac{b-a}{6} f(a|b) \right| \leq C(b-a)^{\frac{5}{2}} \sqrt{\sigma(f'')}.
\]
(8)

We may find a function \(f : [a, b] \to \mathbb{R}\) such that \(f'\) is absolutely continuous on \([a, b]\) as
\[
f'(x) = \begin{cases}
\frac{(x-a)^2}{6} - \frac{(b-a)(x-a)^2}{12} & \text{if } x \in [a, \frac{a+b}{2}], \\
\frac{(x-b)^2}{6} + \frac{(b-a)(x-b)^2}{12} & \text{if } x \in (\frac{a+b}{2}, b].
\end{cases}
\]

It follows that
\[
f''(x) = \begin{cases}
\frac{(x-a)^2}{2} - \frac{(b-a)(x-a)}{6} & \text{if } x \in [a, \frac{a+b}{2}], \\
\frac{(x-b)^2}{2} + \frac{(b-a)(x-b)}{6} & \text{if } x \in (\frac{a+b}{2}, b].
\end{cases}
\]
(9)

By (5)-(7) and (9), it is not difficult to find that the left-hand side of the inequality (8) becomes
\[
L.H.S.(8) = \frac{(b-a)^5}{4320},
\]
(10)

and the right-hand side of the inequality (8) is
\[
R.H.S.(8) = \frac{C(b-a)^{\frac{5}{2}}}{12\sqrt{30}}.
\]
(11)
From (8), (10) and (11), we find that \(C \geq \frac{1}{12 \sqrt{30}} \), proving that the constant \(\frac{1}{12 \sqrt{30}} \) is the best possible in (4).

THEOREM 4. Let \(f : [a, b] \rightarrow \mathbb{R} \) be such that \(f'' \) is absolutely continuous on \([a, b]\) and \(f''' \in L^2[a, b] \). Then we have
\[
\left| \int_a^b f(x) \, dx - \frac{b - a}{6} f(a|b) \right| \leq \frac{(b - a)^{\frac{7}{2}}}{48 \sqrt{105}} \sqrt{\sigma(f''')}.
\]

Inequality (12) is sharp in the sense that the constant \(\frac{1}{48 \sqrt{105}} \) cannot be replaced by a smaller one.

PROOF. Let us define the function
\[
S_3(x) := \begin{cases} \frac{(x-a)^3}{6} - \frac{(b-a)(x-a)^2}{12} & x \in [a, \frac{a+b}{2}], \\ \frac{(x-b)^3}{6} + \frac{(b-a)(x-b)^2}{12} & x \in (\frac{a+b}{2}, b]. \end{cases}
\]

Integrating by parts, we obtain
\[
\int_a^b S_3(x) f'''(x) \, dx = \frac{b - a}{6} f(a|b) - \int_a^b f(x) \, dx.
\]

By elementary calculus, we have
\[
\int_a^b S_3(x) \, dx = 0, \quad \int_a^b S_3^2(x) \, dx = \frac{(b - a)^7}{241920}.
\]

Thus from (14), (15) and (2), we can easily get
\[
\left| \int_a^b f(x) \, dx - \frac{b - a}{6} f(a|b) \right| = \left| \int_a^b S_3(x) f'''(x) \, dx \right|
\leq \left(\int_a^b S_3^2(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^b \left[f'''(x) - \frac{f''(b) - f''(a)}{b - a} \right]^2 \, dx \right)^{\frac{1}{2}}
\leq \frac{(b - a)^{\frac{7}{2}}}{241920} \left\{ \left\| f''' \right\|_2^2 - \frac{\| f''(b) - f''(a) \|_2^2}{b - a} \right\}^{\frac{1}{2}}
= \frac{(b - a)^{\frac{7}{2}}}{48 \sqrt{105}} \sqrt{\sigma(f''')}.
\]

We now suppose that (12) holds with a constant \(C > 0 \) as
\[
\left| \int_a^b f(x) \, dx - \frac{b - a}{6} f(a|b) \right| \leq C(b - a)^{\frac{7}{2}} \sqrt{\sigma(f''')}.
\]
We may find a function \(f : [a, b] \to \mathbb{R} \) such that \(f'' \) is absolutely continuous on \([a, b]\) as

\[
f''(x) = \begin{cases}
\frac{(x-a)^3}{24} - \frac{(b-a)(x-a)^3}{36} & \text{if } x \in [a, \frac{a+b}{2}], \\
\frac{(x-a)^3}{24} + \frac{(b-a)(x-b)^3}{36} & \text{if } x \in \left(\frac{a+b}{2}, b\right].
\end{cases}
\]

It follows that

\[
f'''(x) = \begin{cases}
\frac{(x-a)^3}{6} - \frac{(b-a)(x-a)^2}{12} & \text{if } x \in [a, \frac{a+b}{2}], \\
\frac{(x-a)^3}{6} + \frac{(b-a)(x-b)^2}{12} & \text{if } x \in \left(\frac{a+b}{2}, b\right].
\end{cases}
\]

By (13)-(15) and (17), it is not difficult to find that the left-hand side of the inequality (16) becomes

\[
\text{L.H.S.}(16) = \frac{(b-a)^7}{241920}, \tag{18}
\]

and the right-hand side of the inequality (16) is

\[
\text{R.H.S.}(16) = \frac{C(b-a)^7}{48\sqrt{105}}. \tag{19}
\]

From (16), (18) and (19), we find that \(C \geq \frac{1}{48\sqrt{105}} \), proving that the constant \(\frac{1}{48\sqrt{105}} \) is the best possible in (12).

Remark 1. It should be noticed that the classical Simpson type inequalities (1), (4) and (12) have been appeared in [3] without the proofs of their sharpness but with some misprints.

3 Two Sharp Generalized Simpson Type Inequalities

In [4], we may find the identity

\[
(-1)^n \int_a^b S_n(x) f^{(n)}(x) \, dx = \int_a^b f(x) dx - \frac{b-a}{6} f(a|x|) + \sum_{k=2}^{\left[\frac{n-1}{2} \right]} (k-1)(b-a)^{2k+1} \frac{3(2k+1)!}{3^{2k+1}2^{2k-1}} f^{(2k)} \left(\frac{a+b}{2} \right), \tag{20}
\]

where \(\left[\frac{n-1}{2} \right] \) denotes the integer part of \(\frac{n-1}{2} \) and \(S_n(x) \) is the kernel given by

\[
S_n(x) = \begin{cases}
\frac{(x-a)^n}{n!} - \frac{(b-a)(x-a)^n}{6(n-1)!} & \text{if } x \in [a, \frac{a+b}{2}], \\
\frac{(x-b)^n}{n!} + \frac{(b-a)(x-b)^n}{6(n-1)!} & \text{if } x \in \left(\frac{a+b}{2}, b\right].
\end{cases}
\]

By elementary calculus, it is not difficult to get

\[
\int_a^b S_n(x) \, dx = \begin{cases}
0, & \text{if } n \text{ odd}, \\
\frac{-(n-2)(b-a)^{n+1}}{3(n+1)!2^n}, & \text{if } n \text{ even.} \tag{22}
\end{cases}
\]
and
\[
\int_a^b S_n^2(x) \, dx = \frac{(2n^3 - 11n^2 + 18n - 6)(b - a)^{2n+1}}{9(4n^2 - 1)(n!)^2 2^{2n}}. \quad (23)
\]

THEOREM 5. Let \(f : [a, b] \to \mathbb{R} \) be such that \(f^{(n-1)} \) is absolutely continuous on \([a, b]\) and \(f^{(n)} \in L^2[a, b] \) where \(n \) is an odd integer. Then we have
\[
\left| \int_a^b f(x) \, dx - \frac{b - a}{6} f(a) + \frac{(n-1)(b - a)^{2k+1}}{3(2k + 1)! 2^{2k-1}} f^{(2k)} \left(\frac{a + b}{2} \right) \right| \leq \frac{1}{3} \frac{(b - a)^{n+\frac{3}{2}}}{2^n n!} \sqrt{\frac{2n^3 - 11n^2 + 18n - 6}{4n^2 - 1}} \sqrt{\sigma(f^{(n)})}. \quad (24)
\]

Inequality (24) is sharp in the sense that the constant \(\frac{1}{3} \frac{1}{2^n n!} \sqrt{\frac{2n^3 - 11n^2 + 18n - 6}{4n^2 - 1}} \sqrt{\sigma(f^{(n)})} \) cannot be replaced by a smaller one.

PROOF. From (20), (22), (23) and (2), we can easily get
\[
\left| \int_a^b f(x) \, dx - \frac{b - a}{6} f(a) + \frac{(n-1)(b - a)^{2k+1}}{3(2k + 1)! 2^{2k-1}} f^{(2k)} \left(\frac{a + b}{2} \right) \right| = \left| \int_a^b S_n(x) f^{(n)}(x) \, dx \right|
\]
\[
= \left| \int_a^b S_n(x) \left[f^{(n)}(x) - \frac{1}{b - a} \int_a^b f^{(n)}(t) \, dt \right] \, dx \right|
\]
\[
\leq \left(\int_a^b S_n^2(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^b \left[f^{(n)}(x) - \frac{f^{(n-1)}(b) - f^{(n-1)}(a)}{b - a} \right]^2 \, dx \right)^{\frac{1}{2}}
\]
\[
= \left(\frac{(2n^3 - 11n^2 + 18n - 6)(b - a)^{2n+1}}{9(4n^2 - 1)(n!)^2 2^{2n}} \right)^{\frac{1}{4}} \left(\|f^{(n)}\|_2^2 \left(\frac{f^{(n-1)}(b) - f^{(n-1)}(a)}{b - a} \right)^2 \right)^{\frac{1}{4}}
\]
\[
= \frac{1}{3} \frac{(b - a)^{n+\frac{3}{2}}}{2^n n!} \sqrt{\frac{2n^3 - 11n^2 + 18n - 6}{4n^2 - 1}} \sqrt{\sigma(f^{(n)})}.
\]

We now suppose that (24) holds with a constant \(C > 0 \) as
\[
\left| \int_a^b f(x) \, dx - \frac{b - a}{6} f(a) + \frac{(n-1)(b - a)^{2k+1}}{3(2k + 1)! 2^{2k-1}} f^{(2k)} \left(\frac{a + b}{2} \right) \right| \leq C(b - a)^{n+\frac{3}{2}} \sqrt{\sigma(f^{(n)})}. \quad (25)
\]

We may find a function \(f : [a, b] \to \mathbb{R} \) such that \(f^{(n-1)} \) is absolutely continuous on \([a, b]\) as
\[
f^{(n-1)}(x) = \begin{cases}
 \frac{(x-a)^{n+1}}{(n+1)!} & \text{if } x \in [a, \frac{a+b}{2}] \\
 \frac{(a-b)^{n+1}}{(n+1)!} & \text{if } x \in (\frac{a+b}{2}, b].
\end{cases}
\]
It follows that

$$f^{(n)}(x) = \begin{cases} \frac{(x-a)^n}{n!} - \frac{(b-a)(x-a)^{n-1}}{6(n-1)!} & \text{if } x \in \left[a, \frac{a+b}{2}\right], \\ \frac{(x-b)^n}{n!} + \frac{(b-a)(x-b)^{n-1}}{6(n-1)!} & \text{if } x \in \left(\frac{a+b}{2}, b\right]. \end{cases} \quad (26)$$

By (20)-(23) and (26), it is not difficult to find that the left-hand side of the inequality (25) becomes

$$L.H.S.(25) = \frac{(2n^3 - 11n^2 + 18n - 6)(b - a)^{2n+1}}{9(4n^2 - 1)(n!)^22^{2n}}, \quad (27)$$

and the right-hand side of the inequality (25) is

$$R.H.S.(25) = \frac{1}{3} \frac{1}{2^n n!} \sqrt{2n^3 - 11n^2 + 18n - 6} \frac{C(b - a)^{2n+1}}{4n^2 - 1}. \quad (28)$$

From (25), (27) and (28), we find that

$$C \geq \frac{1}{3} \frac{1}{2^n n!} \sqrt{2n^3 - 11n^2 + 18n - 6} \frac{C(b - a)^{2n+1}}{4n^2 - 1},$$

proving that the constant \(\frac{1}{3} \frac{1}{2^n n!} \sqrt{2n^3 - 11n^2 + 18n - 6} \) is the best possible in (24).

REMARK 2. It is clear that Theorem 1 and Theorem 4 can be regarded as special cases of Theorem 5.

THEOREM 6. Let \(f : [a, b] \to \mathbb{R}\) be such that \(f^{(n-1)}\) is absolutely continuous on \([a, b]\) and \(f^{(n)} \in L^2[a, b]\) where \(n\) is an even integer. Then we have

$$\left| \int_a^b f(x) \, dx - \frac{b - a}{6} f(a|b) + \sum_{k=2}^{n+1} \frac{(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-1}} f^{(2k)}(\frac{a+b}{2}) \right|$$

$$\leq \frac{1}{3} \frac{1}{2^n (n+1)!} \sqrt{2n^3 - 11n^2 + 14n^3 + 4n^2 + 2n - 2} \sqrt{\sigma(f^{(n)})}. \quad (29)$$

Inequality (29) is sharp in the sense that the constant \(\frac{1}{3} \frac{1}{2^n (n+1)!} \sqrt{2n^3 - 11n^2 + 14n^3 + 4n^2 + 2n - 2} \) cannot be replaced by a smaller one.
We may find a function $C > 0$ as

$$f(x) = \sum_{k=2}^{\infty} \frac{(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-1}} f^{(2k)} \left(\frac{a+b}{2} \right) \left(\frac{1}{2} \right) + \frac{(n-2)(b-a)^n}{3(n+1)!2^n} |f^{(n-1)}(b) - f^{(n-1)}(a)|$$

We now suppose that (29) holds with a constant $C > 0$ as

$$\left| \int_a^b f(x) \, dx - \frac{b-a}{6} f(a) + \sum_{k=2}^{\infty} \frac{(k-1)(b-a)^{2k+1}}{3(2k+1)!2^{2k-1}} f^{(2k)} \left(\frac{a+b}{2} \right) \right| \leq \frac{(n-2)(b-a)^n}{3(n+1)!2^n} |f^{(n-1)}(b) - f^{(n-1)}(a)|$$

We may find a function $f : [a, b] \to \mathbb{R}$ such that $f^{(n-1)}$ is absolutely continuous on $[a, b]$ as

$$f^{(n-1)}(x) = \begin{cases} \frac{(x-a)^{n+1}}{(n+1)!} + \frac{(b-a)(x-a)^n}{6n} + \frac{(n-2)(b-a)^{n+1}}{3(n+1)!2^{2n+1}} & \text{if } x \in [a, \frac{a+b}{2}], \\ \frac{(x-b)^{n+1}}{(n+1)!} + \frac{(b-a)(x-b)^n}{6n} - \frac{(n-2)(b-a)^{n+1}}{3(n+1)!2^{2n+1}} & \text{if } x \in (\frac{a+b}{2}, b]. \end{cases}$$
It follows that
\[
 f^{(n)}(x) = \begin{cases}
 \frac{(x-a)^n}{n!} - \frac{(b-a)(x-a)^{n-1}}{6(n-1)!} & \text{if } x \in [a, \frac{a+b}{2}], \\
 \frac{(x-b)^n}{n!} + \frac{(b-a)(x-b)^{n-1}}{6(n-1)!} & \text{if } x \in \left(\frac{a+b}{2}, b\right].
 \end{cases}
\]
(31)

By (20)-(23) and (31), it is not difficult to find that the left-hand side of the inequality (30) becomes
\[
 L.H.S.(30) = \frac{2n^5 - 11n^4 + 14n^3 + 4n^2 + 2n - 2}{9(4n^2 - 1)(n + 1)!^{22n}}.
\]
(32)

and the right-hand side of the inequality (30) is
\[
 R.H.S.(30) = \frac{1}{3} \frac{1}{2^{n(n+1)!}} \sqrt{\frac{2n^5 - 11n^4 + 14n^3 + 4n^2 + 2n - 2}{4n^2 - 1}} C(b - a)^{2n+1}.
\]
(33)

From (30), (32) and (33), we find that \(C \geq \frac{1}{3} \frac{1}{2^{n(n+1)!}} \sqrt{\frac{2n^5 - 11n^4 + 14n^3 + 4n^2 + 2n - 2}{4n^2 - 1}} \),
proving that the constant \(\frac{1}{3} \frac{1}{2^{n(n+1)!}} \sqrt{\frac{2n^5 - 11n^4 + 14n^3 + 4n^2 + 2n - 2}{4n^2 - 1}} \) is the best possible in (29).

REMARK 3. It is clear that Theorem 3 can be regarded as a special case of Theorem 6.

REMARK 4. If we take \(n = 4 \) in Theorem 6, we get a sharp perturbed Simpson type inequality as
\[
 \left| \int_a^b f(t) \, dt - \frac{1}{b-a} f(a) + \frac{(b-a)^4}{2880} [f(3)(b) - f(3)(a)] \right| \leq \frac{1}{2880} \sqrt{\frac{11}{14} (b-a)^\frac{7}{2} \sqrt{\sigma(f^{(4)})}}.
\]
(34)

Also, it should be noticed that inequality (34) has been appeared in [3] without a proof of its sharpness but with a misprint.

4 Applications in Numerical Integration

We restrict further considerations to the applications of Theorem 3 and Theorem 4.

THEOREM 7. Let \(\pi = \{x_0 = a < x_1 < \cdots < x_n = b\} \) be a given subdivision of the interval \([a, b]\) such that \(h_i = x_{i+1} - x_i = h = \frac{b-a}{n} \) and let the assumptions of Theorem 3 hold. Then we have
\[
 \left| \int_a^b f(x) \, dx - \frac{h}{6} \sum_{i=0}^{n-1} f(x_i|x_{i+1}) \right| \leq \frac{(b-a)^{\frac{7}{2}}}{12\sqrt{30n^2}} \sqrt{\sigma(f^{(7)})}.
\]
(35)

PROOF. From (4) in Theorem 3 we obtain
\[
 \left| \int_{x_i}^{x_{i+1}} f(t) \, dt - \frac{h}{6} f(x_i|x_{i+1}) \right| \leq \frac{h^{\frac{7}{2}}}{12\sqrt{30}} \left\{ \int_{x_i}^{x_{i+1}} [f''(t)]^2 \, dt - \frac{1}{h} [f'(x_{i+1}) - f'(x_i)]^2 \right\}^{\frac{7}{4}}.
\]
(36)
By summing (36) over i from 0 to $n - 1$ and using the generalized triangle inequality, we get

$$\left| \int_a^b f(t) \, dt - \frac{h}{6} \sum_{i=0}^{n-1} f(x_i \mid x_{i+1}) \right| \leq \frac{h^\frac{7}{2}}{12\sqrt{30}} \sum_{i=0}^{n-1} \left\{ \int_{x_i}^{x_{i+1}} \left[f''(t) \right]^2 \, dt - \frac{1}{h} [f'(x_{i+1}) - f'(x_i)]^2 \right\}^{\frac{1}{2}}. \quad (37)$$

By using the Cauchy inequality twice, it is not difficult to obtain

$$\sum_{i=0}^{n-1} \left\{ \int_{x_i}^{x_{i+1}} \left[f''(t) \right]^2 \, dt - \frac{1}{h} [f'(x_{i+1}) - f'(x_i)]^2 \right\}^{\frac{1}{2}} \leq \sqrt{\pi} \left\{ \int_a^b \left[f''(t) \right]^2 \, dt - \frac{n}{b-a} \sum_{i=0}^{n-1} [f'(x_{i+1}) - f'(x_i)]^2 \right\}^{\frac{1}{2}} \leq \sqrt{\pi} \left\{ ||f''||_2^2 - \frac{\left[f'(b) - f'(a) \right]^2}{b-a} \right\}^{\frac{1}{2}}. \quad (38)$$

Consequently, the inequality (35) follows from (37) and (38).

THEOREM 8. Let $\pi = \{x_0 = a < x_1 < \cdots < x_n = b\}$ be a given subdivision of the interval $[a, b]$ such that $h_i = x_{i+1} - x_i = h = \frac{b-a}{n}$ and let the assumptions of Theorem 4 hold. Then we have

$$\left| \int_a^b f(x) \, dx - \frac{h}{6} \sum_{i=0}^{n-1} f(x_i \mid x_{i+1}) \right| \leq \frac{(b-a)^{\frac{7}{2}}}{48\sqrt{105}n^3} \sqrt{\sigma(f''')} \cdot (39)$$

PROOF. From (12) in Theorem 4 we obtain

$$\left| \int_{x_i}^{x_{i+1}} f(t) \, dt - \frac{h}{6} f(x_i \mid x_{i+1}) \right| \leq \frac{h^\frac{7}{2}}{48\sqrt{105}} \left\{ \int_{x_i}^{x_{i+1}} \left[f''(t) \right]^2 \, dt - \frac{1}{h} [f''(x_{i+1}) - f''(x_i)]^2 \right\}^{\frac{1}{2}}. \quad (40)$$

By summing (40) over i from 0 to $n - 1$ and using the generalized triangle inequality, we get

$$\left| \int_a^b f(t) \, dt - \frac{h}{6} \sum_{i=0}^{n-1} f(x_i \mid x_{i+1}) \right| \leq \frac{h^\frac{7}{2}}{48\sqrt{105}} \sum_{i=0}^{n-1} \left\{ \int_{x_i}^{x_{i+1}} \left[f''(t) \right]^2 \, dt - \frac{1}{h} [f''(x_{i+1}) - f''(x_i)]^2 \right\}^{\frac{1}{2}}. \quad (41)$$
By using the Cauchy inequality twice, it is not difficult to obtain

\[
\sum_{i=0}^{n-1} \left\{ \int_{x_i}^{x_{i+1}} \left[f'''(t) \right]^2 dt - \frac{1}{b-a} \sum_{i=0}^{n-1} \left[f''(x_{i+1}) - f''(x_i) \right]^2 \right\}^{\frac{1}{2}} \\
\leq \sqrt{n} \left\{ \int_a^b \left[f'''(t) \right]^2 dt - \frac{n}{b-a} \sum_{i=0}^{n-1} \left[f''(x_{i+1}) - f''(x_i) \right]^2 \right\}^{\frac{1}{2}}
\]

\leq \sqrt{n} \left\{ \int_a^b \left[f'''(t) \right]^2 dt - \frac{\left[f''(b) - f''(a) \right]^2}{b-a} \right\}^{\frac{1}{2}}. \tag{42}
\]

Consequently, the inequality (39) follows from (41) and (42).

References

