\relax \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Stability region for forth order Runge-Kutta method.}}{3}} \newlabel{rk4}{{1}{3}} \newlabel{eq.Fdx}{{1}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {1(a)}{\ignorespaces $u_t + c(x)u_x=0$ with $N = 128$}}{5}} \newlabel{fig.p1a}{{1(a)}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {1(b)}{\ignorespaces $ u_{tt} = u_{xx}$ with $N = 80$}}{7}} \newlabel{fig.p1b}{{1(b)}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {1(c)}{\ignorespaces $ u_t + u u_x + u_{xxx} = 0$ with $N = 256$}}{9}} \newlabel{fig.p1c}{{1(c)}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {1(d)}{\ignorespaces $i \epsilon u_t + \epsilon ^2 u_{xx} (-|u|^2-x^2) u =0$ with $N = 128$}}{12}} \newlabel{fig.p1d}{{1(d)}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {1(e)}{\ignorespaces $i \epsilon u_t + \epsilon ^2 u_{xx} +(|u|^2-1) u=0$ with $N = 128$}}{13}} \newlabel{fig.p1e}{{1(e)}{13}} \@writefile{lof}{\contentsline {figure}{\numberline {1(f)}{\ignorespaces $i\epsilon u_t + \epsilon ^2 u_{xx} + (1-|u|^2)|u|^2 u=0$ with $N = 128$}}{14}} \newlabel{fig.p1f}{{1(f)}{14}} \@writefile{lof}{\contentsline {figure}{\numberline {1(g)}{\ignorespaces $i\epsilon u_t + \epsilon ^2 u_{xx} = \frac {2u_x^2\mathaccentV {bar}016u}{1+|u|^2}$ with $N = 128$}}{15}} \newlabel{fig.p1g}{{1(g)}{15}} \@writefile{lof}{\contentsline {figure}{\numberline {1(h)}{\ignorespaces $\phi _{tt} - \phi _{xx} + V'(\phi ) = 0$ with $N = 128$}}{17}} \newlabel{fig.p1h}{{1(h)}{17}} \@writefile{lof}{\contentsline {figure}{\numberline {2(a)}{\ignorespaces $ u_t + u u_x = \epsilon u_{xx}$ with $N = 128$}}{20}} \newlabel{fig.p2a}{{2(a)}{20}} \@writefile{lof}{\contentsline {figure}{\numberline {2(b)}{\ignorespaces $ u_t + u u_x = - u_{xx} - \epsilon ^2 u_{xxxx}$ with $N = 128$}}{21}} \newlabel{fig.p2b}{{2(b)}{21}} \@writefile{lof}{\contentsline {figure}{\numberline {2(c)}{\ignorespaces $u_t = u(1-u^2) + \epsilon ^2 u_{xx}$ with $N = 128$}}{22}} \newlabel{fig.p2c}{{2(c)}{22}} \@writefile{lof}{\contentsline {figure}{\numberline {2(d)}{\ignorespaces $ u_t = - ((1-u^2)u_x)_x , - \epsilon ^2 u_{xxxx}$ with $N = 128$}}{23}} \newlabel{fig.p2d}{{2(d)}{23}} \@writefile{lof}{\contentsline {figure}{\numberline {2(f)}{\ignorespaces $u_t = \partial _x( (a (u_{x})^2 -1) u_{x}) - \epsilon ^2 u_{xxxx}$ with $N = 128$}}{24}} \newlabel{fig.p2f}{{2(f)}{24}} \@writefile{lof}{\contentsline {figure}{\numberline {2(g)}{\ignorespaces $ u_t = -\partial _x(\frac {u_x}{1+ (u_x)^2}) - \epsilon ^2 u_{xxxx}$ with $N = 128$}}{25}} \newlabel{fig.p2g}{{2(g)}{25}} \@writefile{lof}{\contentsline {figure}{\numberline {2(h)}{\ignorespaces $ u_t = - \epsilon ^2 (u u_{xxx})_x - (u^3 u_x)_x$ with $N = 128$}}{26}} \newlabel{fig.p2h}{{2(h)}{26}} \@writefile{lof}{\contentsline {figure}{\numberline {2(i)}{\ignorespaces $u_{tt} - (W'(u_x))_x - u_{xxt} + u = 0$ with $N = 128$}}{27}} \newlabel{fig.p2i}{{2(i)}{27}} \newlabel{pb}{{2}{28}} \@writefile{lof}{\contentsline {figure}{\numberline {3(a)}{\ignorespaces Spectral solution of (2\hbox {}).}}{29}} \newlabel{p3a}{{3(a)}{29}} \newlabel{eig}{{3}{29}} \newlabel{Poi}{{4}{29}} \@writefile{lof}{\contentsline {figure}{\numberline {3(b)}{\ignorespaces Spectral solution of (3\hbox {}).}}{30}} \newlabel{p3b}{{3(b)}{30}} \@writefile{lof}{\contentsline {figure}{\numberline {3(c)}{\ignorespaces Spectral solution to (4\hbox {}).}}{30}} \newlabel{p3c}{{3(c)}{30}} \@writefile{toc}{\contentsline {section}{\numberline {A}Code Listings}{31}}