
Lecture Notes for

MA5233, Advanced Scientific Computing

By

Liu Jian Guo

matjgl@math.nus.edu.sg

Department of mathematics, National University of Singapore

March 2003

Chapter Four - Fast Fourier Transforms,
Wavelets, and their Applications

1 Introduction

In this chapter we will provide the basic theory and algorithms for (Fast) Fourier Transforms
and Wavelet Transforms, which are capable of being applied to many fundamental problems
in science and engineering. Such applications include the solving of Differential Equations,
image compression, and the use of filtering to recover images.

2 Fourier Transforms

We introduce some basic types of Fourier Transforms (FTs). A Fourier Transform takes an
input, which could be a function f(x) or a set of discrete data values {fj} sampled from

a function, and produces an output. The output can also be a function f̂(ξ) or a set of
discrete data values {f̂k}. In general, the inputs and outputs are complex. In the case of
one-dimensional inputs and outputs, some FTs and their corresponding inverse FTs are as
follows:

Continuous input on R: Let f : R→ C. Then

f̂(ξ) =

∫ ∞

−∞
f(x)e−2πiξx dx ,

f(x) =

∫ ∞

−∞
f̂(ξ)e2πiξx dξ .

Continuous periodic input: Let f : R → C be 1-periodic, viz., f(x + 1) = f(x) ∀x ∈ R.
Then

f̂k =

∫ 1

0

f(x)e−2πikx dx, k ∈ Z ,

f(x) =
∑

k∈Z
f̂ke

2πikx .

1



Discrete input on R: Let {fj} - where fj := f( j
N

) - be a set of values sampled from a
function f : R→ C at equally spaced points (spaced a distance 1

N
apart). Then

f̂(ξ) =
1

N

∑

j∈Z
fje

−2πijξ/N ,

fj =

∫ N/2

−N/2

f̂(ξ)e2πijξ/N dξ, j ∈ Z .

We have restricted the output f̂(ξ) to a finite domain ξ ∈ [−N
2
, N

2
). (N

2
is known as the

Nyquist frequency.) Therefore if we have a function f whose transform f̂ vanishes outside
the interval [−N0

2
, N0

2
), then we can obtain full information about f from the samples f( j

N
)

if the spacing between the sample points is sufficiently small: 1
N
≤ 1

N0
. This result is known

as the ‘sampling theorem’.

Discrete input on [−M/2, M/2): Let {fj} - where fj := f( j
N

) - be a set of values sampled
from a function f : [−M/2,M/2) → C at equally spaced points (spaced a distance 1

N
apart).

Then

f̂k =
1

N

NM/2−1∑

j=−NM/2

fje
−2πijk/(NM), k = −NM/2, · · · ,MN/2 ,

fj =
1

M

NM/2∑

k=−NM/2

f̂ke
2πijk/(NM), j = −NM/2, · · · ,MN/2− 1 .

Discrete periodic input: Let {fj}N−1
j=0 - where fj := f( j

N
) - be a set of values sampled

from a 1-periodic function f : R→ C. Then

f̂k =
1

N

N−1∑
j=0

fje
−2πijk/N , k = 0, · · · , N − 1 , (1)

fj =
N−1∑

k=0

f̂ke
2πijk/N , j = 0, · · · , N − 1 .

We also mention three important special cases of the FT with discrete periodic data:

Discrete Sine Transform (DST): Let {fj}N−1
j=0 - where fj := f( j

N
) - be a set of values

sampled from an odd 2-periodic function f : R→ C. Then

f̂k =
1

N

N−1∑
j=1

fj sin

(
jkπ

N

)
, k = 1, · · · , N − 1 ,

fj =
N−1∑

k=1

f̂k sin

(
jkπ

N

)
, j = 1, · · · , N − 1 .

(2)

We now introduce a variant of the Σ notation that has been used previously:

2



∑b
j=a ′ gj ≡

(∑b
j=a gj

)
− 1

2
(ga + gb).

Discrete Cosine Transform (DCT): Let {fj}N−1
j=0 - where fj := f( j

N
) - be a set of values

sampled from an even 2-periodic function f : R→ C. Then

f̂k =
1

N

N∑
j=0

′ fj cos

(
jkπ

N

)
, k = 0, · · · , N ,

fj =
N∑

k=0

′ f̂k cos

(
jkπ

N

)
, j = 0, · · · , N .

Real Discrete Fourier Transform: Let {fj}N−1
j=0 - where fj := f( j

N
) and N is even - be

a set of values sampled from a real 1-periodic function f : R→ R . Then

ak =
2

N

N−1∑
j=0

fj cos

(
2jkπ

N

)
, k = 0, · · · ,

N

2
, bk =

2

N

N−1∑
j=1

fj sin

(
2jkπ

N

)
, k = 1, · · · ,

N

2
−1 ,

fj =

N/2∑

k=0

′
(

ak cos

(
2jkπ

N

)
+ bk sin

(
2jkπ

N

))
, j = 0, · · · , N − 1 .

The factors 1
N

and 2
N

which appear in the above Transforms, are normalizing constants:

1

N

N−1∑
j=0

e−2πijk/Ne2πij`/N =

{
1 : k ≡ ` (mod N)
0 : k 6≡ ` (mod N)

.

(Note that k ≡ ` (mod N) ⇐⇒ k = ` + jN for some integer j.)

3 Fast Fourier Transforms

We will now focus our attention on the specific Discrete Fourier Transform (DFT) given in
(1). In particular, we investigate the amount of computational effort required to compute
a DFT f̂ = (f̂0, · · · , f̂N−1)

T via a ‘standard’ implementation as well as a much smarter
implementation.

When implementing (1), the values of e−2πik/N are assumed to be already stored in a
machine, so the computation of these constants can be considered an ‘overhead’, and will
not included in the operations count. An operations count is an count of the number of
operations (e.g. multiplications/divisions and additions/subtractions) in a computational
process. It is not difficult to see from (1) that the computation of each f̂k will require
O (N) multiplications and O (N) additions. Therefore the computation of f̂ will require
O (N2) operations in total. It should be noted that since we are multiplying and adding
complex numbers in (1), one needs to differentiate between complex operations and real
operations. For example, one complex multiplication (i.e. multiplying two complex numbers),
requires four real multiplications and two real additions. So although a complex operation

3



is more expensive than a real operation, the computational efforts of the two processes are
proportional to each other.

When N is large, as is usually the case in applications, an O (N2) process will require a
prohibitive amount of running time on a computer. However in the 1960s, an implementation
of (1) which reduced the operations count from O (N2) to O (N log2 N) was discovered.
Since log2 N ¿ N for large values of N , the new implementation represented a significant
improvement. To obtain the improved bound, we will assume for simplicity that N is a
power of 2. If N isn’t a power of 2, then we can pad f with zeros until its length is a power
of 2. However the precise constants in the O (N log2 N) bound will depend on the ability to
which we can factor N into small primes. Although a factorization of the form N = 2α is
best, factorizations such as 2α3β or 2α3β5γ also give relatively low operations counts.

If N is a power of 2, we can write N = 2n for some integer n. For convenience, define
ωN := e−2πi/N so that ω2

N = ωn, ωn
n = 1, and ωn

N = −1. So from (1) we have that

f̂k =
1

N

N−1∑
j=0

fjω
jk
N

=
1

2n

n−1∑

`=0

(f2`ω
2`k
N + f2`+1ω

(2`+1)k
N )

=
1

2n

n−1∑

`=0

f e
` ω`k

n +
1

2n
ωk

N

n−1∑

`=0

f o
` ω`k

n

=
1

2
f̂ e +

1

2
ωk

N f̂ o. (3)

Similarly it can be shown that

f̂n+k =
1

2
f̂ e − 1

2
ωk

N f̂ o, (4)

where f e := (f0, f2, · · · , fN−2)
T and f o := (f1, f3, · · · , fN−1)

T are n-dimensional vectors
containing the even and odd indexed values respectively of f . We have performed what is
known as an even-odd splitting : we have split a DFT of an N -dimensional vector into two
DFTs of n-dimensional vectors. If JN denotes the number of real operations required to
compute a DFT of an N -dimensional vector, it can be shown that JN = 2JN/2 + 5N . The

final term is due to the n complex multiplications of wk
N with f̂ o (which is equivalent to 6n

real operations), as well as the complex addition and subtraction in (3)-(4). (The effect on
the operations count of the multiplicative factor of 1

2
will be ignored, since in practice, (3)-(4)

are merely steps in a more complex algorithm, and the multiplication can be embedded in
a later computation). Since J1 = 0, we conclude that the operations count is approximately
JN = 5N log2 N .

The above implementation, which is performed recursively until it is no longer possible
to perform a splitting, is called the Fast Fourier Transform (FFT). The following Matlab
code from [2] computes the FFT of a row vector x ∈ CN whose length is a power of 2. It is
NOT the most efficient implementation; it just demonstrates the idea.

function y = simple_fft(x)

4



N = length(x);
if N>1

ye = simple_fft(x(1:2:end));
yo = simple_fft(x(2:2:end)).*exp(-2*pi*i*(0:N/2-1)/N);
y = [ye+yo, ye-yo];

else
y = x;

end

3.1 Numerical Solution of Differential Equations via FFT

As an example of FFT in action, consider the following second order Boundary Value Problem
(BVP):

u′′(x) = f(x), u(0) = u(1) = 0, 0 < x < 1, (5)

where f(x) is a given function. This problem is known as the one-dimensional Poisson
problem with Dirichlet Boundary Conditions (BCs). The term ‘Dirichlet’ refers to the fact
that at each endpoint of the domain [0,1] we are given the value of the solution u(x), rather
than, say, the value of u′(x).

If f(x) is a complicated function, it will not be possible to find the exact (analytical)
solution to (5). However we can obtain an approximation to the exact solution by introducing
a finite difference scheme. We will estimate the values of the exact solution at a finite number
of points in [0,1]. For simplicity we will consider a uniform grid consisting of N subintervals.
In other words, the domain is discretized by the set of points {xj}N

j=0 with xj = jh, where
h = 1/N is the grid size (i.e. the length of each subinterval).

To represent the value of u′′(x) at one of these grid points, it is necessary to find an
approximation to it that doesn’t involve derivatives. The well-known second order central
difference scheme

u′′(xj) ≈ uj+1 − 2uj + uj−1

h2
, j = 1, 2, · · · , N − 1 (6)

is an example of such a formula, where uj is an approximation to the exact solution at
the grid point xj. Note that the BCs in (5) imply that we can set u0 = uN = 0 so that at the
endpoints, the approximate solution will equal the exact solution. Now define fj := f(xj)
for j = 1, 2, · · · , N − 1. So from (5)-(6) we have the following system of linear equations
(one equation for each interior grid point) for the {uj} :

uj+1 − 2uj + uj−1

h2
= fj, j = 1, 2, · · · , N − 1. (7)

Instead of solving the system in (7) via classical matrix methods, we shall transform it
into Fourier space to find a relation between the {ûk} and {f̂k} (which are the DSTs of the
{uj} and {fj} respectively). As we will see, the relationship in Fourier space is particularly
simple. We then transform back into our original space to solve explicitly for the unknowns
{uj}N−1

j=1 . Although we are presenting a one-dimensional example here for simplicity, it is
important to note that in higher dimensions, solving the linear system in (7) via FFT is
cheaper than solving it via classical matrix methods. This is a direct consequence of the
O (N log2 N) bound.

5



Denote the imaginary part of a complex number z by Im(z). Since eiθ = cos(θ) + i sin(θ)
for θ ∈ R, then sin(θ) = Im(eiθ) and eiθ − e−iθ = 2i sin(θ). So if we express (7) in terms of
the inverse DST in (2), we have (for j = 1, 2, · · · , N − 1):

N−1∑

k=1

f̂k sin

(
jkπ

N

)
=

N−1∑

k=1

ûk
1

h2
Im

(
eikπ(j+1)/N − 2eikπj/N + eikπ(j−1)/N

)

=
N−1∑

k=1

ûk
1

h2
Im

(
eijkπ/N

(
eikπ/2N − e−ikπ/2N

)2
)

=
N−1∑

k=1

ûk
1

h2
Im

(
eijkπ/N

(
2i sin

(
kπ

2N

))2
)

=
N−1∑

k=1

ûk
−4

h2
sin2

(
kπ

2N

)
sin

(
jkπ

N

)

=
N−1∑

k=1

ûkλk sin

(
jkπ

N

)
, (8)

where

λk :=
−4

h2
sin2

(
kπ

2N

)
, k = 1, 2, · · · , N − 1 (9)

are the Fourier multipliers. By equating the coefficients of sin( jkπ
N

) we have the following
relation in Fourier space:

f̂k = λkûk, k = 1, 2, · · · , N − 1.

So we have the following algorithm:
• Transform the right-hand side values {fj} (via the FFT implementation of the DST) to

obtain {f̂k} in Fourier Space:

f̂k =
1

N

N−1∑
j=1

fj sin

(
jkπ

N

)
, k = 1, 2, · · · , N − 1.

• Convert the {f̂k} into the {ûk} via the Fourier multipliers:

λk =
−4

h2
sin2

(
kπ

2N

)
, ûk =

f̂k

λk

, k = 1, 2, · · · , N − 1.

• Take the inverse DST (implemented as a FFT) to obtain the numerical solution {uj} of
(5):

uj =
N−1∑

k=1

ûk sin

(
jkπ

N

)
, j = 1, 2, · · · , N − 1.

In Matlab, the commands dst and idst can be used to determine the DST and its
inverse.

6



3.1.1 Generalization to nonhomogeneous Dirichlet BCs and domain [a,b]

We now extend the original Dirichlet problem to the case where the BCs are no longer
homogeneous, and the domain is no longer the unit domain. For the BVP

u′′(x) = f(x), u(a) = u0, u(b) = uN , a < x < b, (10)

we discretize the domain uniformly according to xj = a + jh, j = 0, 1, · · · , N, where
h = (b− a)/N . A further modification is required to handle the nonhomogeneous BCs. For
j = 2, 3, · · · , N − 2 in (7), the boundary values u0 and uN are not present. However when
j = 1, N − 1 we have

u2 − 2u1 + u0

h2
= f1,

uN − 2uN−1 + uN−2

h2
= fN−1. (11)

By moving the known boundary data to the right-hand sides of the formulas in (11), we
have homogenized the BCs:

u2 − 2u1

h2
= f1 − u0

h2
,

−2uN−1 + uN−2

h2
= fN−1 − uN

h2
. (12)

Therefore we can solve for {uj}N−1
j=1 using the same steps that were used in solving the

homogeneous BVP on the unit domain, except for the following modifications:
(1) The right-hand side values {fj}N−1

j=1 are those of f(x) evaluated at x1 = a + h, x2 =
a + 2h, · · · , xN−1 = a + (N − 1)h;
(2) In view of (12), the first and last elements of the vector of fj values need to be changed
from f1 and fN−1 to f1 − u0

h2 and fN−1 − uN

h2 respectively.

3.1.2 Generalization to nonhomogeneous Neumann BCs

We now change the Dirichlet BCs of (10) so that instead of knowing the solution u(x) on
the boundary, we only know the values of u′(x). Such BCs are known as Neumann BCs:

u′′(x) = f(x), u′(a) = g0, u′(b) = gN , a < x < b, (13)

We have N + 1 unknowns {uj}N
j=0. To be able to write out a finite difference scheme

in the same way that we have previously, it is necessary to convert the derivative terms
u′(a), u′(b) into formulas involving u(x) only. This can be done via a first order central
difference formula: u′(xj) ≈ (u(xj+1) − u(xj−1))/2h. In our discretization of the domain
[a,b], we have a = x0 and b = xN , so the Neumann BCs can be approximated by

u′(a) ≈ u1 − u−1

2h
= g0, and u′(b) ≈ uN+1 − uN−1

2h
= gN . (14)

Since we are only interested in determining {uj}N
j=0, and not u−1 or uN+1, we can eliminate

the latter two values by combining (7) for j = 0 and N , with (14). Thus

2u1 − 2u0

h2
= f0 +

2

h
g0,

−2uN + 2uN−1

h2
= fN − 2

h
gN . (15)

7



The N + 1 unknowns are then determined by solving N + 1 equations consisting of (7)
for j = 1, 2, · · · , N − 1, and (15). By applying a DCT to this system of equations after
modifying the right-hand side vector to f̃ := (f0 + 2

h
g0, f1, · · · , fN−1, fN − 2

h
gN)T , we find

that the process of determining a numerical solution to (13) is similar to the algorithm given
earlier for finding a numerical solution to the Dirichlet problem (5).

Since (13) only contain derivatives of u(x), but not u(x) itself, the solution is only unique
up to an additive constant. That is, if u(x) is a solution, then so is u(x) + C for an arbi-
trary constant C. Therefore we have one degree of freedom when computing the solution.
Typically we choose û0 = 0.

So a numerical solution to (13) is found as follows:
• Transform the modified right-hand side values {f̃j} (via the FFT implementation of the

DCT) to obtain {f̂k}:

f̂k =
1

N

N∑
j=0

′ f̃j cos

(
jkπ

N

)
, k = 1, 2, · · · , N.

• Convert the {f̂k} into the {ûk} via the Fourier multipliers:

û0 = 0, λk =
−4

h2
sin2

(
kπ

2N

)
, ûk =

f̂k

λk

, k = 1, 2, · · · , N.

• Take the inverse DCT (implemented as a FFT) to obtain {uj}:

uj =
N∑

k=0

′ ûk cos

(
jkπ

N

)
, j = 0, 1, · · · , N.

In Matlab, the commands dct and idct can be used to determine the DCT and its
inverse.

Another variation on the type of BCs one may encounter when attempting to solve a
BVP is a mixed Dirichlet/Neumann BC, e.g., u(0) = u′(1) = 0. It can be shown that the
numerical solution obeys a sine expansion of the form

uj =
N∑

k=1

ûk sin

(
(2k + 1)j

2N
π

)
. (16)

This is known as a quarter-wave expansion.

3.1.3 Generalization to 2-dimensional BVPs

Now consider the following two-dimensional Poisson Problem, in which we wish to solve a
BVP for a function u(x, y) in two-dimensional space:

∂2u

∂x2
+

∂2u

∂y2
= f(x, y), (x, y) ∈ Ω ≡ (0, 1)× (0, 1),

u(x, y) = 0 on the boundary of Ω.
(17)

8



Discretize the domain Ω into rectangles of width hx and height hy by introducing the
grid points

xi = ihx, i = 0, 1, · · · , Nx =
1

hx

, yj = jhy, j = 0, 1, · · · , Ny =
1

hy

.

In analogue to (6), define the following central difference approximations to the second
derivative terms in (17):

D2
xui,j :=

ui+1,j − 2ui,j + ui−1,j

h2
x

, D2
yui,j :=

ui,j+1 − 2ui,j + ui,j−1

h2
y

.

This gives rise to the following linear system (c.f. (7)):

(D2
x + D2

y)ui,j = fi,j , i = 1, · · · , Nx − 1, j = 1, · · · , Ny − 1, (18)

where ui,j and fi,j are approximations to the exact solution u(x, y) and right-hand side
f(x, y) respectively at the point (xi, yj). Since the exact solution vanishes on the boundary,
we also impose the BCs u0,j = uNx,j = 0, j = 0, 1, · · · , Ny, and ui,0 = ui,Ny = 0, i =
0, 1, · · · , Nx.

Analogously to (2), we can define the two-dimensional DST that transforms {ui,j} to
{ûk,`}, and its inverse:

ûk,` =
1

NxNy

Nx−1∑
i=1

Ny−1∑
j=1

ui,j sin

(
ikπ

Nx

)
sin

(
j`π

Ny

)
, k = 1, · · · , Nx − 1, ` = 1, · · · , Ny − 1, (19)

ui,j =
Nx−1∑

k=1

Ny−1∑

`=1

ûk,` sin

(
ikπ

Nx

)
sin

(
j`π

Ny

)
, i = 1, · · · , Nx − 1, j = 1, · · · , Ny − 1. (20)

So

D2
xui,j =

Nx−1∑

k=1

Ny−1∑

`=1

ûk,`D
2
x sin

(
ikπ

Nx

)
sin

(
j`π

Ny

)
=

Nx−1∑

k=1

Ny−1∑

`=1

ûk,`

(
λk sin

(
ikπ

Nx

))
sin

(
j`π

Ny

)
,

where

λk :=
−4

h2
x

sin2

(
kπ

2Nx

)
, k = 1, · · · , Nx − 1 (c.f. (8)-(9)). (21)

Similarly,

D2
yui,j =

Nx−1∑

k=1

Ny−1∑

`=1

ûk,`

(
λ̃` sin

(
j`π

Ny

))
sin

(
ikπ

Nx

)
,

where

λ̃` :=
−4

h2
y

sin2

(
`π

2Ny

)
, ` = 1, · · · , Ny − 1. (22)

9



So in terms of two-dimensional DSTs, (18) becomes

Nx−1∑

k=1

Ny−1∑

`=1

ûk,`(λk + λ̃`) sin

(
ikπ

Nx

)
sin

(
j`π

Ny

)
=

Nx−1∑

k=1

Ny−1∑

`=1

f̂k,` sin

(
ikπ

Nx

)
sin

(
j`π

Ny

)
,

i.e. ûk,`(λk + λ̃`) = f̂k,` , k = 1, · · · , Nx − 1, ` = 1, · · · , Ny − 1. (23)

In an similar way to the one-dimensional case, we then have the following algorithm:

• Find the DST of {fi,j} using (19) – with f, f̂ replacing u, û.

• Compute {λk}, {λ̃l} using (21)-(22), and then {ûk,l} using (23).

• Compute the numerical solution {ui,j} using (20).

4 Image Processing

One of the many applications of Fourier Transforms is in Image Processing. An ‘image’
can be thought of as a two-dimensional function defined inside some rectangular domain.
The function values measure the ‘brightness’ of the image at certain points in the domain.
Although images are continuous functions, they need to be discretized in order to be stored
in memory. Hence the need to divide the domain into small subsquares, called ‘pixels’, and
store one representative brightness value from each pixel. However there are some practical
difficulties associated with this approach. If we use a 256 (= 28) color level (so that the
brightness values are measured on an integer scale from 0 to 255), then 8 bits of memory
are required to store each brightness value. If an accurate discretization of the image is to
be obtained, an excessive amount of memory would be required to store the large number
of brightness values. In addition, one has to figure how to reverse the discretization process,
i.e. how to recover the image (or at least a good approximation to it) from the discrete
brightness values. In what follows, we will attempt to address these two concerns.

4.1 Image Compression

Suppose that we divide our domain (which is assumed to be the unit square [0,1] × [0,1], for
simplicity) into N2 subsquares of equal size. Label the rows and columns 0, 1, · · · , N − 1,
and let fij be the brightness value at the center of the subsquare located in the ith row
and jth column. By taking the two-dimensional DCT of the {fij} (in Matlab, use the dct2

command), we obtain the Fourier coefficients {f̂k`}:

f̂k` =
1

N2

N−1∑
i=0

N−1∑
j=0

fij cos

(
(2i + 1)kπ

2N

)
cos

(
(2j + 1)`π

2N

)
, k, ` = 0, · · · , N − 1 . (24)

10



The two-dimensional DCT is used because its inverse (idct2 in Matlab)

fij =
N−1∑

k=0

N−1∑

`=0

f̂k` cos

(
(2i + 1)kπ

2N

)
cos

(
(2j + 1)`π

2N

)
, i, j = 0, · · · , N − 1 (25)

allows for an even extension of the {fij} to R2. In other words, we can extend the function
in the x direction to [0,2] × [0,1] via an even extension about the line x = 1. Now extend
the resulting image in the y direction to [0,2] × [0,2] via an even extension about the line
y = 1. By continually repeating this process, we obtain the required extension to R2. There
will be no discontinuities at the edges in the even extension to R2, which is a desirable
property. The other reason why we wish to transform the image data {fij} into the Fourier

coefficients {f̂k`} is that the quality of the image can be reasonably retained even if we only
use a few of the Fourier coefficients in (25) to reconstruct the image. This idea is known as
image compression. After computing the Fourier coefficients via (24), we throw away a given
proportion of the coefficients whose magnitudes are smallest, i.e. we set these coefficients to
zero. The compute the compressed image via (25). Since we have kept the coefficients with
the largest influence on the image, the compressed image should approximate the original
image reasonably well. (Of course if we throw away too many coefficients, the image will be
compressed too much, and we will not be able to satisfactorily recover the original image.)

The image compression process can be implemented without too much difficulty in Mat-
lab. BMP, TIFF, or GIF images are suitable for compression, but JPEG images are not,
since they have already been significantly compressed. We can use the xv software (which
exists on UNIX Operating Systems - simply type xv & at the command line to launch the
viewer) to cut a portion of an image that can be used for compression. A portion that is
sharp and strong in contrast is preferable. This can be done in xv as follows: After launch-
ing xv, click the right mouse button to bring up the controls and load the image. Select
“Image Info” from the “Windows” menu. While holding the left mouse button, drag the
mouse from one corner to the diagonally opposite corner while the current size is displayed
in the “Info” window. When satisfied with the selected area, release the mouse button, click
“Crop”, and then “Save”. When saving, choose the format “TIFF”, the color “Greyscale”,
and no Compression.

Import the cropped portion of the image into Matlab via the Matlab command
im = double(imread(’filename.tiff’,’tiff’)). The image is now represented as the
matrix im. Now cut from this portion a smaller portion containing a fixed number of sub-
squares: im = im(1:N,1:N). The image now contains N2 subsquares and can be viewed in
Matlab via the command imshow(im,[]). We now proceed with the image compression by
cutting off x% of the DCT coefficients. In Matlab, this is done as follows:

dctim = dct2(im); % Compute the two-dimensional DCT of the image.
dctim1 = reshape(dctim,N^2,1); % Reshape dctim into a vector before sorting.
[s,index] = sort(abs(dctim1)); % Sort the magnitudes of the Fourier coefficients.
cutoff = ceil((x/100)*N^2); % Compute the number of coefficients to be cut off.
dctim1(index(1:cutoff)) = 0;
dctim0 = reshape(dctim1,N,N)); % Reshape the compressed data into a matrix.
im0 = idct2(dctim0); % Compute the compressed image via the Inverse DCT.

11



4.2 The Weiner Filter

We now investigate the problem of recovering an original image, given a ‘blurred’ version of
the image that has also been affected by ‘noise’. The blurriness in an image is a consequence
of the fact that the technology used to obtain the image is not perfect; it still exists even
if not visible to the naked eye. The technology that is used to capture an image essentially
applies a response function that convolves the original (unblurred) image. The response
function blurs the original image by smoothing out the sharp features of the image. Since
the behavior of a response function can usually be quantified, in principal we could apply
the inverse of this response function through a process called deconvolution to recover the
original image. However we must also take into account the effect of noise, which is always
added to the original image in a nondeterministic way. For example, the noise values added
to each pixel might be random variables belonging to a Uniform or Normal distribution. This
makes it difficult to recover the original image. Suppose that the original image f is given
by an N by N matrix of brightness values, as in the previous section. Then the response r
and the noise n are also given by matrices of the same size. The blurred noisy image g is
then given by

g = r ∗ f + n , (26)

where r ∗ f is the convolution of r with f . The (discrete) convolution is given by the matrix
with components

(r ∗ f)i,j =
∑

k,`

ri−k,j−` fk,` .

It can then be shown that in the DCT (24), convolution transforms to multiplication:

(̂r ∗ f) = r̂f̂ ,

where all hatted quantities represent two-dimensional DCTs, and on the right-hand side, we
have componentwise multiplication (NOT matrix multiplication) of the two matrices r̂ and
f̂ . In other words, (r̂f̂)i,j ≡ r̂i,j × f̂i,j . In Matlab, the syntax is r hat.*f hat . So after
taking the two-dimensional DCT of (26), we obtain

ĝ = r̂f̂ + n̂ . (27)

An approximation to the DCT of the original image, f̂ , can be obtained by ignoring the
effect of noise, and applying deconvolution to (27):

ĝ ≈ r̂f̂ =⇒ f̂ ≈ ĝ

r̂
. (28)

(The division operator in the right-hand side of (28) denotes componentwise division - in
Matlab, use g hat./r hat .) Since our objective is to recover the original image f (via f̂) as
accurately as possible, we will now investigate whether it is possible to apply a special filter to
the approximation ĝ/r̂ so that it better approximates f̂ . Let the filter (which mathematically
speaking, will be a matrix of size N by N) be Q. Then our improved approximation to f̂
can be expressed as

ĥ :=
ĝ

r̂
Q̂ . (29)

12



We hope that if Q is chosen well, then after taking the Inverse DCT of ĥ, h will be a
good approximation to the original image f . One way of achieving this is to minimize the
error h − f in the Least Squares sense:

∑N−1
i,j=0 E ((hi,j − fi,j)

2) . (The Least Squares error
is also known as the Mean Square error.) E(·) denotes the Expectation (i.e. mean). This
is required because of the nondeterministic nature of the noise, which is present in the hi,j

terms. It can be shown (by a result called ‘Parseval’s identity’) that E ((hi,j − fi,j)
2) =

E((ĥi,j − f̂i,j)
2), so in the least squares sense, our goal is to find the matrix Q (or Q̂) which

minimizes
∑N−1

k,`=0 E((ĥk,`− f̂k,`)
2). This is a separable optimization problem in the sense that

the minimum can be found by minimizing each term in the summation separately. In other
words, for each k and `, we wish to minimize

E
(
(ĥk,` − f̂k,`)

2
)

= E

((
ĝk,`

r̂k,`

Q̂k,` − f̂k,`

)2
)

= E




(
r̂k,`f̂k,` + n̂k,`

r̂k,`

Q̂k,` − f̂k,`

)2



= E




(
f̂k,`(Q̂k,` − 1) +

Q̂k,`

r̂k,`

n̂k,`

)2



= (f̂k,`(Q̂k,` − 1))2 + 2f̂k,`(Q̂k,` − 1)
Q̂k,`

r̂k,`

E(n̂k,`) +

(
Q̂k,`

r̂k,`

)2

E(n̂2
k,`), (30)

since the values of f̂k,` , Q̂k,` , and r̂k,` are deterministic, but the n̂k,` are random variables.
For simplicity, we will assume that the noise values on each pixel have mean zero, are
uncorrelated, and have the same standard deviation σ, i.e.

E(ni,j) = 0 ∀ i, j, and Cov(ni1,j1 , ni2,j2) = σ2δi1i2δj1j2 ∀ i1, j1, i2, j2. (31)

(Given two random variables X and Y , Cov(X,Y ):=E[(X−E(X))(Y −E(Y ))] denotes their
Covariance, and δ denotes the Kronecker delta: δij = 1 if i = j, and 0 otherwise.) The ‘mean
zero’ assumption simply says that in some pixels, the noise is expected to add brightness to
the image, and the total increase in brightness is balanced by the decrease in brightness that
the noise inflicts on the other pixels.

It can be shown that the DCT of the noise satisfies the same properties in (31) as the
noise itself. For example

E(n̂k,`) = E

(
1

N2

∑
i,j

ni,j cos

(
(2i + 1)kπ

2N

)
cos

(
(2j + 1)`π

2N

))
,

=
1

N2

∑
i,j

E(ni,j) cos

(
(2i + 1)kπ

2N

)
cos

(
(2j + 1)`π

2N

)
,

= 0 from (31).

13



It then follows from (30) that

E
(
(ĥk,` − f̂k,`)

2
)

= (f̂k,`(Q̂k,` − 1))2 +

(
Q̂k,`

r̂k,`

)2

σ2 .

The right-hand side is a quadratic function of Q̂k,` which achieves its minimum value when

dE
(
(ĥk,` − f̂k,`)

2
)

dQ̂k,`

= 2f̂ 2
k,`(Q̂k,` − 1) + 2

Q̂k,`

r̂2
k,`

σ2 = 0 ,

i.e. Q̂k,` =
1

1 +
(

σ

f̂k,`r̂k,`

)2 . (32)

The matrix Q whose DCT has the elements given in (32) is known as the ‘Weiner filter’
or ‘Optimum Filter’. In practice the values of Q̂k,` cannot be computed precisely since f̂k,` is

not known. Instead, we set Q̂k,` = 1
1+α2 , and experiment with different values of α to obtain

the best approximation to the original image f . In other words, for a range of α values, we
compute Q̂k,` = 1

1+α2 for all k, `, then ĥ via (29), and finally we apply the Inverse DCT to ĥ
to obtain h ≈ f .

5 Wavelets

In the previous section, we expressed a two-dimensional image f(x) in terms of the basis

functions {cos
(

(2j+1)`π
2N

)
} - c.f. (25). We shall now assume for simplicity that f is one-

dimensional. It is necessary to assume that f is L2-integrable on R, viz.,
∫∞
−∞ f(x)2 dx < ∞

(so f is not required to be continuous). We will now consider a new basis involving Wavelet
functions in which we can represent f . Roughly speaking, a Wavelet function has the
property that under certain types of translation and scaling, we can form a basis for the
space of all L2-integrable functions. Such functions provide a good basis for approximating
signals and images. We will study both the properties and construction of these functions.

As an example of a simple wavelet, consider the approximation of a function f by a
piecewise constant function. Firstly we choose an integer j such that f is sampled at the
grid points xj,k = khj for k ∈ Z, where hj = 1/2j, is the grid size. We call j the ‘level of the
grid’. One possible form for the piecewise constant approximant of f is

fj,k =
1

hj

∫ xj,k+1

xj,k

f(x) dx , xj,k < x < xj,k+1 , k ∈ Z . (33)

Note that fj,k is simply the mean value of f on the interval [xj,k , xj,k+1]. In view of
xj−1,k = k/2j−1 = 2k/2j = xj,2k , we see that when we increase the level of the grid, from
j − 1 to j, we are doubling the density of grid points. The grid at level j is the grid at level
j−1 supplemented by new grid points halfway between each pair of grid points in level j−1.
It is not difficult to show using (33) that the heights of the piecewise constant approximants
at levels j − 1 and j are related by

fj−1,k =
1

2
(fj,2k + fj,2k+1) . (34)

14



Now define

gj−1,k =
1

2
(fj,2k − fj,2k+1) , cj,k = 2j/2fj,k , dj,k = 2j/2gj,k . (35)

We than have the following recursive relations between the c·,· and d·,· values at levels
j − 1 and j:

cj−1,k =
1√
2
(cj,2k + cj,2k+1) , dj−1,k =

1√
2
(cj,2k − cj,2k+1), (36)

cj,2k =
1√
2
(cj−1,k + dj−1,k) , cj,2k+1 =

1√
2
(cj−1,k − dj−1,k). (37)

((36) and (37) are known as the Haar Wavelet Transform (WT) and the Haar Inverse Wavelet
Transform (IWT).)

We now extend the ideas used in formulating the Haar WT and IWT by introducing
the concept of a filter bank. A filter bank is simply a collection of sets of coefficients in any
generalized WT and IWT: {a`}, {b`}, {ã`}, {b̃`}, where

cj−1,k =
∑

`

a`cj,2k+` , dj−1,k =
∑

`

b`cj,2k+` , (38)

and

cj,2k =
∑

`

(ã−2`cj−1,k+` + b̃−2`dj−1,k+`) , cj,2k+1 =
∑

`

(ã−2`+1cj−1,k+` + b̃−2`+1dj−1,k+`) (39)

represent the generalized WT and IWT respectively. The coefficients {a`}, {b`} are said
to correspond to ‘low-pass’ and ‘high-pass’ filters respectively. One of the main features of
modern Wavelet theory is that each of the four sequences of coefficients in the filter bank
have compact support. This means that all of the coefficients are zero except for a small
number of consecutive nonzero coefficients. Therefore when we have to compute infinite
series with the filter bank coefficients serving as the coefficients of that series, we need only
evaluate a small number of terms. In fact a comparison of (36)-(37) with (38)-(39) shows
that for the Haar Wavelets, we have

a0 = ã0 = a1 = ã1 = b0 = b̃0 =
1√
2
, b1 = b̃1 =

−1√
2

. (40)

Now it is not difficult to verify that the IWT in (39) can be written as

cj,k =
∑

`

(ãk−2`cj−1,` + b̃k−2`dj−1,`) , k ∈ Z. (41)

We will now find conditions on the filter bank, so that in going from level j − 1 to j
and then back to level j − 1 (or vice-versa), the values of c·,· and d·,· are preserved. This is
necessary for consistency. To do this, we define the following Fourier series, also known as
‘mask functions’:

a(z) =
∑

`

a`z
` , b(z) =

∑

`

b`z
` , ã(z) =

∑

`

ã`z
` , b̃(z) =

∑

`

b̃`z
` ,

15



and cj(z) =
∑

k

cj,kz
k , (42)

where z = e2πiθ is a complex number of unit length. From (41)-(42) we see that

cj(z) =
∑

k,`

(ãk−2`cj−1,` + b̃k−2`dj−1,`)z
k = ã(z)cj−1(z

2) + b̃(z)dj−1(z
2), (43)

and

cj−1(z
2) =

∑

k

cj−1,kz
2k =

∑

k,`

a`cj,2k+`z
2k 1 + (−1)2k

2
=

∑

m,`

a`cj,m+`z
m 1 + (−1)m

2

=
1

2

∑

m,`

a`cj,m+`z
m +

1

2

∑

m,`

a`cj,m+`(−z)m

=
1

2
a(z−1)cj(z) +

1

2
a(−z−1)cj(−z). (44)

Similarly,

dj−1(z
2) =

1

2
b(z−1)cj(z) +

1

2
b(−z−1)cj(−z). (45)

Combining (43)-(45), gives

cj(z) =
1

2
(ã(z)a(z−1) + b̃(z)b(z−1))cj(z) +

1

2
(ã(z)a(−z−1) + b̃(z)b(−z−1))cj(−z) . (46)

Since this must hold for any z (of unit length), we can equate the coefficients of cj(z)
and cj(−z) to obtain the following conditions on the mask functions:

ã(z)a(z−1) + b̃(z)b(z−1) = 2 , ã(z)a(−z−1) + b̃(z)b(−z−1) = 0. (47)

These conditions are well-known in the signal processing engineering. They are called the per-
fect (or exact) reconstruction conditions. These conditions alone are not enough to uniquely
determine the mask functions. Therefore we impose some more conditions. (See [1] - page
162 for a discussion of the different types of conditions that can be imposed.) We will
consider the case where

ã(z) = a(z), b̃(z) = b(z), b(z) = −za(−z−1) . (48)

The filters chosen as above are called quadrature mirror filters (QMF). (use Conjugate
Quadrature Filters to be associated with wavelet functions. See page 163 of [1]. ) Hence

b(z) = −z
∑

`

a`(−z)−` =
∑

`

a`(−z)1−` =
∑
m

(−1)ma1−mzm .

So the relationships between the filter bank coefficients are given by

bk = (−1)ka1−k, ãk = ak, b̃k = bk , (49)

and from (47)-(48), we have that the {ak} are restricted by

a(z)a(z−1) + a(−z)a(−z−1) = 2. (50)

16



In the case of a real filter bank, this reduces to

|a(z)|2 + |a(−z)|2 = 2. (51)

As an example,

2 = 2(cos2(πθ) + sin2(πθ))

= |
√

2eiπθ cos(πθ)|2 + | −
√

2ieiπθ sin(πθ)|2
= |a(z)|2 + |a(−z)|2 ,

where

a(z) =
√

2eiπθ cos(πθ) =
√

2eiπθ

(
e−iπθ + eiπθ

2

)
=

1√
2
(1 + e2iπθ) =

1√
2
(1 + z) .

Comparing this with a(z) =
∑

` a`z
` and (49), we obtain the coefficients in (40). (Note

that a(z) does not uniquely satisfy (51).) The other filter bank coefficients are given by
(49). This is actually the Haar wavelet, the simplest type of wavelet. A slightly more
complicated wavelet known as the ‘db2 wavelet’ (named after Daubechies, who is one of
pioneers in developing Wavelet theory). The wavelet is more complicated in the sense that
each of the mask functions consists of four nonzero terms (as opposed to two in the Haar
wavelet). However the extra nonzero terms in the mask functions allow for a more accurate
representation of a function by continuous piecewise linear basis functions, instead of the
piecewise constant basis functions used for Haar wavelets. The coefficients in the db2 filter
bank are determined as follows:

2 = 2(cos2(πθ) + sin2(πθ))3

= 2 cos4(πθ)(cos2(πθ) + 3 sin2(πθ)) + 2 sin4(πθ)(sin2(πθ) + 3 cos2(πθ))

= |a(z)|2 + |a(−z)|2 ,

where

a(z) =
√

2e3πiθ cos2(πθ)(cos(πθ)− i
√

3 sin(πθ))

=
√

2e3πiθ

(
eπiθ + e−πiθ

2

)2 (
eπiθ + e−πiθ

2
− i
√

3
eπiθ − e−πiθ

2i

)

=
1

4
√

2

(
e2πiθ + 1

)2
(
e2πiθ + 1−

√
3(e2πiθ − 1)

)

=
1

4
√

2
(z + 1)2(z + 1−

√
3(z − 1)) .

Upon expanding a(z) - which is nonunique - in powers of z, we obtain

a0 =
1 +

√
3

4
√

2
, a1 =

3 +
√

3

4
√

2
, a2 =

3−√3

4
√

2
, a3 =

1−√3

4
√

2
. (52)

17



In general, the coefficients in the Daubechies wavelets of order n can be determined similarly
as above:

2 = 2(cos2(πθ) + sin2(πθ))2n−1

= 2 cosn(πθ)
n−1∑

k=0

(
2n− 1

k

)
cos2(n−1−k)(πθ) sin2k(πθ)) + 2 sinn(πθ)

n−1∑

k=0

(
2n− 1

k

)
sin2(n−1−k)(πθ) cos2k(πθ))

= |a(z)|2 + |a(−z)|2 ,

where a(z) is a square root of 2 cosn(πθ)
∑n−1

k=0

(
2n−1

k

)
cos2(n−1−k)(πθ) sin2k(πθ)) by using

Riesz’s lemma (cf. [1]).
As usual, the other filter bank coefficients are given by (49). In Matlab, the commands

dbwavf(’haar’) and dbwavf(’db2’) generate the coefficients a` in the filter bank. However
they are different from those given in (40) and (52), since in Matlab, they are linearly scaled
so that they sum to one.

As we have seen previously, associated with a filter bank is a Wavelet Transform. We now
turn to the problem of computing basis functions. Consider the following basis functions:
The Refinable function

φ(x) =
√

2
∑

`

a`φ(2x− `) , (53)

the Scaling function φ(x) is refinable and orthonormal

∫ ∞

−∞
φ(x)φ(x− `)dx =

{
1, if ` = 0,
0, otherwise ,

(54)

and the Wavelet function

ψ(x) =
√

2
∑

`

b`φ(2x− `) (55)

if φ is a scaling function. Usually we will not be able to find a simple analytic formula for φ
(or ψ), but it is possible to compute φ to arbitrarily high precision using what is known as
the Cascade Algorithm. The idea is simply to iterate on (53):

φn+1(x) =
√

2
∑

`

a`φ
n(2x− `) , n = 0, 1, · · · .

where some initial guess φ0(x) has been prescribed, e.g. φ0(x) = χ[0,1)(x), where

χ[a,b)(x) :=

{
1 : if a ≤ x < b
0 : else

.

After a suitable approximation has been found to φ(x) by iterating the Cascade Algo-
rithm, we can compute an approximation to the ψ(x) via (55).

In the case of the Haar wavelet (with coefficients from (40)), it is possible to find a simple
analytic formula for φ. It is easy to verify that it is given by

φ(x) = χ[0,1)(x) , (56)

18



since φ(2x) = χ[0,1/2)(x), and φ(2x− 1) = χ[1/2,1)(x),

so that
φ(x) = φ(2x) + φ(2x− 1),

which is (53). The Wavelet function is given by

ψ(x) = χ[0,1/2)(x)− χ[1/2,1)(x) =





1 : if 0 ≤ x < 1/2
−1 : if 1/2 ≤ x < 1
0 : else

.

In the case of the db2 wavelet however, things are more complicated. The following code
plots the Scaling and Wavelet functions (see Figure 1) with 10 iterations (levels) of the db2
filter. Unlike in (56), there is no simple formula for the Scaling (or Wavelet) function. As
mentioned previously, the {a`} values given in Figure 1 are different from those in Matlab.
For consistency, Matlab also scales the Scaling and Wavelet functions: in (53)-(55),

√
2

becomes 2.

% Compute the db2 coefficients:
[PHI,PSI,XVAL] = wavefun(’db2’,10);

% Plot the scaling function:
subplot(2,1,1), plot(XVAL,PHI);

% Plot the wavelet function:
subplot(2,1,2), plot(XVAL,PSI);

We now explain how Scaling and Wavelet functions can be used to obtain (38)-(39). Suppose
that these functions take on the following form:

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k) . (57)

Here k represents the translation of φ(x) and ψ(x), and 2j represents a scaling. Then from (53)-(55)
we have that

φj−1,k(x) =
∑

`

a`φj,2k+`(x), ψj−1,k(x) =
∑

`

b`φj,2k+`(x) . (58)

Now for two functions f(x), g(x) that are L2-integrable on R, define the following inner product:

〈f(x), g(x)〉 =
∫ ∞

−∞
f(x)g(x) dx .

It can then be shown that the {φj,k} from (57) satisfy the following properties:

〈φj,k, φj,`〉 = δk` ∀ j, k, ` ∈ Z ,

〈φj,k, ψj,`〉 = 0 ∀ j, k, ` ∈ Z ,

〈ψj,k, ψ`,m〉 = δj`δkm ∀ j, k, ` ∈ Z . (59)

19



0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

The db2 scaling function φ obtained from the Cascade Algorithm: φn+1(x)=2Σ a
k
 φn(2x−k), for n=0,1,... 

Low−pass filter with coefficients  a
0
=(1+sqrt(3))/8, a

1
=(3+sqrt(3))/8, a

2
=(3−sqrt(3))/8, a

3
=(1−sqrt(3))/8

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

The db2 wavelet function ψ(x)=2Σ b
k
 φ(2x−k)

High−pass filter with coefficients b
−2

, b
−1

, b
0
, and b

1
, where b

k
=(−1)k a

1−k

Figure 1: Plots of the Scaling and Wavelet functions for the db2 filter.

20



From (59) we have that the {ψj,k} are orthornormal. If
∫∞
∞ φ(x)dx = 1, i.e., the coefficients a`’s

sum to one, we can show that {ψj,k} is an orthonormal basis for L2. Hence any function f ∈ L2

can be represented as
f(x) =

∑

j,k

〈f, ψj,k〉ψj,k(x) . (60)

In analogue to (35), define

cj,k = 〈f, φj,k〉, dj,k = 〈f, ψj,k〉 . (61)

In practice, we do not compute the formulas in (61), since we would be required to numerically
evaluate the integrals. Rather, we use the formulas for cj,k and dj,k in (35) as approximations. Now
from (58), we have that

cj−1,k =
∑

`

a`cj,2k+` , dj−1,k =
∑

`

b`cj,2k+` . (62)

This is known as the single-level Discrete Wavelet Transform (DWT). The process of iterating
this transform from level j to 0 in increments of 1 is known as wavelet decomposition. The result
is the multi-level DWT:

{cj,k}k∈Z → {c0,k, d0,k, d1,k, · · · , dj−1,k}k∈Z . (63)

In other words, we compute the {cj,k}, and then {di,k} recursively for i = 0, 1, · · · , j− 1. These
are precisely the coefficients in (60) and gives us a representation of f by wavelets.

The inverse of this transform is obtained recursively by a process known as wavelet reconstruc-
tion:

cj,2k =
∑

`

(ã−2`cj−1,k+` + b̃−2`dj−1,k+`), cj,2k+1 =
∑

`

(ã−2`+1cj−1,k+` + b̃−2`+1dj−1,k+`). (64)

This is (38)-(39). The Matlab commands dwt, idwt, waverec, and wavedec implement single
and multi-level one-dimensional DWTs.

References

[1] I. Daubechies, Ten Lectures on Wavelets, 1992.

[2] T. von Petersdorff’s webpage: http://www.glue.umd.edu/∼tvp/660/ .

[3] J. S. Walker, A Primer on Wavelets and their Scientific Applications, 1999.

21


