Homework Assignment 3.

Given Mar 05, due Mar 16.

- 1. Section 9.7: problems 1, 3, 7, 25, 29, 33, 50, 54, 57, 58.
- 2. Section 9.8: problems 10, 14, 28, 29, 31, 32, 33, 34(a).
- **3.** Chap 9: 27, 28,29, 30, 32, 34, 49-54.
- **4.** Read p 619, which says the Taylor series generated by $(1+x)^m$, $m \in R$, converges on |x| < 1. It is not clear the series converges to $(1+x)^m$ itself since analyzing $R_n(x)$ directly is not quite easy (try it and you'll see why). An alternative approach is through the following steps:
 - (a) Verify that

$$(k+1)\begin{pmatrix} m \\ k+1 \end{pmatrix} + k \begin{pmatrix} m \\ k \end{pmatrix} = m \begin{pmatrix} m \\ k \end{pmatrix}$$

(b) Define, for |x| < 1,

$$f(x) = \sum_{k=0}^{\infty} {m \choose k} x^k = 1 + mx + \frac{m(m-1)}{2!} x^2 + \frac{m(m-1)(m-2)}{3!} x^3 + \cdots$$

Show that f(0) = 1 and

$$(1+x)f'(x) = mf(x)$$

on
$$|x| < 1$$
.

(c) Show that $f(x) = (1+x)^m$.