
Calculus I, Fall 2005 (http://www.math.nthu.edu.tw/˜ wangwc/)

Derivative of Transcendental Functions

Exponential Functions

For any rational number a > 0 and rational number x, the function

f(x) = ax

can be defined.
Typical graphs of y = ax with 0 < a < 1 and a > 1 are given like
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Figure 1: Plot of y = ax, a > 1
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Figure 2: Plot of y = ax, 0 < a < 1

For a, x ∈ R, a > 0, the values of ax are defined by ”continuous extension”. The details
are beyond this course.

1



Proposition 1 For a, b > 0, x, y ∈ R, we have

• ax · ay = ax+y

• ax

ay = ax−y

• ( 1
a
)x = a−x

• (ax)y = axy

• ax · bx = (ab)x

• (a
b
)x = ax

bx

Proposition 2
d

dx
ax =

(

lim
h→0

ah − 1

h

)

ax

Suppose limh→0
ah−1

h
exists, then the limit should be a functions of a, denoted by g(a).

It is easy to see that g(1) = 0 and that g(a2) = 2g(a), or more generally g(ab) = bg(a). Thus
g(a) is an increasing function of a with no upper or lower bounds.

We thus define the Euler number e to be one that satisfies

lim
h→0

eh − 1

h
= 1

It is known that e ∼ 2.718281828 · · · .
As a consequence, we have

d

dx
ex = ex

Example 1 Derivatives involving exponential functions

1. d
dx

ekx = kex

2. d
dx

ex2

= 2xex

3. d
dx

esinx = ex cos x
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How to compute the derivative of y = ax?
The trick is to use the identity

a = eloge a

we denote this special logarithmic function by ln = loge

Proposition 3
d

dx
ax = ln a · ax

Example 2 More derivatives involving exponential functions

1. d
dx

3−x = − ln 3 · 3x

2. d
dx

3sinx =

3. d
dx

(xa + ax) = (Note: a power function (monomial) plus an exponential function)

4. d
dx

aax
+ axa

+ xaa
=
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Inverse Function of y = f(x)

A necessary and sufficient condition for

f : Df 7−→ Rf (f maps from domain of f to range of f)

to have an inverse function is
“f is one-to-one and onto from domain of f to range of f”
If this is the case, we can define the inverse function

f−1 : Rf 7−→ Df (f−1 maps from range of f to domain of f)

Proposition 4 If the inverse functions of f exists, then

• f−1(f(x)) = x, for all x ∈ Df .

• f(f−1(y)) = y, for all y ∈ Rf .

Notice that we have deliberately used a different notation (y) for the argument of f−1 to
avoid possible confusion. This is different from the textbook.

It is better to use different letters (x and y) for elements in Df and Rf . We will follow
this notation through rest of this note.

The inverse function of y = f(x) is thus denoted by x = f−1(y).
The exponential functions are one-to-one and onto from R to R

+. The inverse function,
denote by loga maps from R

+ to R. Therefore

Proposition 5 We have

• loga(a
x) = x, for all x ∈ R.

• aloga y = y, for all y ∈ R
+.

In particular,

• ln(ex) = x, for all x ∈ R.

• eln y = y, for all y ∈ R
+.
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Derivative of Inverse Functions and Logarithmic Func-

tions

Since
f−1(f(x)) = x for all x ∈ Df ,

we take the x− derivative on both sides and use the chain rule to get

d

dy
f−1(f(x)) · df(x)

dx
=

d

dx
x = 1

In other words,
d

dy
f−1(y)|y=f(x) · (

df(x)

dx
) =

d

dx
x = 1

or
d

dy
f−1(y)|y=f(x) =

1
df(x)
dx

For example, if f(x) = ex, then f−1(y) = ln y and we have

d

dy
ln y|y=ex =

1
d
dx

ex
=

1

ex
=

1

y
y > 0.

Note that the arguments y (of f−1) and x (of f) are evaluated on different points: one
on f(x) and the other on x.

The following is WRONG due to confusion from bad notation:

d

dx
ln x =

1
d
dx

ex
=

1

ex
= e−x

Example 3 Let f(x) = x3 − 3x2 − 1, x ≥ 2. Find the value of df−1(x)
dx

at x = −1 = f(3).

Hint: to avoid confusion, it is better to change the problem to ”Find the value of df−1(y)
dy

at

y = −1 = f(3)”.
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Proposition 6 If u(x) > 0 is differentiable, then

d

dx
(ln u) =

1

u
· du

dx

Example 4 Derivative involving logarithmic functions

1. d
dx

ln(x2 + 1) =

2. d
dx

xx = (Hint: x = eln x)

Example 5 (Derivative of rational functions by means of logarithmic functions). Find

d

dx

(x2 + 1)(x − 1)1/3

x + 1
, x > 1

Hint: Let y = (x2+1)(x−1)1/3

x+1
. Use the fact that d

dx
ln y(x) = y′(x)

y(x)
.
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Exponential and Logarithmic Integrals

Proposition 7 We have

1.
∫

exdx = ex + C

2.
∫

axdx =
1

ln a
ax + C

3.
∫

1

x
dx = ln |x| + C

Notice the absolute value in ln |x|. To see this, just evaluate d
dx

ln x for x > 0 and d
dx

ln(−x)
for x < 0, respectively.

Example 6
∫ π/2

0

esin x cos xdx =

∫ x=π/2

x=0

esin x d sin x = esin x
∣

∣

∣

x=π/2

x=0
= e − 1

Example 7
∫

4 cos θ

1 + 2 sin θ
dθ =

∫

4d sin θ

1 + 2 sin θ
= 2

∫

d2 sin θ

1 + 2 sin θ
= 2

∫

d(1 + 2 sin θ)

1 + 2 sin θ
= 2 ln |1+2 sin θ|+C

Example 8
∫

log2 x

x
dx

Example 9
∫

tan x dx
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Example 10
∫

cotx dx

Remark 1

ln x =

∫ x

1

1

t
dt, x > 0

Remark 2
∫ b

a

1

x
dx = ln | b

a
| = ln

b

a
, if a >, b > 0.

∫ d

c

1

x
dx = ln |d

c
| = ln

d

c
, if c < 0, d < 0.

However, if c < 0, b > 0, then
∫ b

c

1

x
dx

does not exist since 1
x

is discontinuous and unbounded on (c, b) in such a way that

lim
a→0+

∫ b

a

1

x
dx = ∞, b > 0,

lim
d→0−

∫ d

c

1

x
dx = −∞, c < 0.
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L’Hôpital’s Rule

Theorem 1 (L’Hôpital’s Rule) Suppose that f(a) = g(a) = 0, that f ′(a) and g′(a) exist,
and that g′(a) 6= 0. Then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

Example 11 limx→0
sin x

x
= limx→0

cos x
1

= 1

Theorem 2 (Strong Form of L’Hôpital’s Rule) Suppose that f(a) = g(a) = 0 and that
f and g are differentiable on (a − δ, a + δ). Suppose also that g′(x) 6= 0 if x 6= a. If

lim
x→a

f ′(x)

g′(x)
=







L
∞

−∞
,

Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Hint: Theorem 2 can be derived easily (at least when the above limit is L), given the
following

Theorem 3 Cauchy’s Mean Value Theorem Suppose f and g are continuous on [a, b] and
differentiable on (a, b), then there exists c ∈ (a, b) such that

∣

∣

∣

∣

f(b) − f(a) f ′(c)
g(b) − g(a) g′(c)

∣

∣

∣

∣

= 0.

Hint: Apply standard Mean Value Theorem to

F (x) =

∣

∣

∣

∣

f(b) − f(a) f(x) − f(a)
g(b) − g(a) g(x) − g(a)

∣

∣

∣

∣

on [a, b].
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Example 12 limx→0
x−sinx

x3 =

Remark 3 Under the same assumption above, if limx→a
f ′(x)
g′(x)

does not exist, it does NOT
imply that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= non-existent .

Instead, L’Hôpital’s Rule gives no conclusion in this case.

Example 13 limx→0
x2 cos 1

x

sinx
=

Hint: L’Hôpital’s Rule in inconclusive, use sandwich Theorem instead.
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Variants of L’Hôpital’s Rule

1. The one sided limit version.

2. The ∞
∞

version.

3. The limx→∞ versions.

In short, whenever you have a indefinite ratio of the form 0
0

or ∞
∞

, you can simply
differentiate both the denominator and the enumerator until you get a limit (either finite or
infinite).

The proof for these variants are beyond the scope of this course. You can look at the
supplement document ‘l’Hôpital.pdf’ if you are really curious about it.

Indefinite Differences and Products: ∞−∞ and 0 · ∞

Example 14 1. limx→0+( 1
sinx

− 1
x
) =

2. limx→∞ x −
√

x2 + x =

Remark 4 The choice of writing 0 ·∞ as 0
0

or ∞
∞

often makes a technical difference, as the
following example shows:

Example 15

lim
x→0+

1

x
· e−1

x = lim
x→0+

e
−1

x

x
= lim

x→0+

1
x

e
1

x

Which one is better?

Intermediate Powers 1∞, 00 and ∞0

Example 16 1. limx→0+ x
1

x =

2. limx→∞ x
1

x =

3. limx→0+ xx =

4. limx→0+(1 + ax)
b
x =

Hint: always use the trick xy = (eln x)y = (ey lnx) and continuity of the exponential function:
elim f(x) = lim ef(x).
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Relative Rates of Growth, small o and Big O

Definition 1 (small o) f(x) = o(g(x)) as x → a if limx→a f(x)/g(x) = 0. One can simi-
larly define the case for x → ∞. This means that f(x) is genuinely “smaller” than g(x).

Definition 2 (Big O) f(x) = O(g(x)) as x → a if | f(x)
g(x)

| is bounded (ie ≤ M for some

M > 0) for all x sufficiently close to a (for all x large enough, in the x → ∞ case). This
means that f(x) is “no larger” than g(x).

Example 17 1. 10x − 1 = O(x) as x → ∞.

2. ax2 + bx + c = O(x2) as x → ∞.

3. 3x = O(
√

x2 + 1) as x → anywhere. (Why?)

Example 18 1. sin x = O(1) as x → anywhere. (Why?)

2. sin x = o(1) as x → 0.

3. sin x = O(x) as x → 0.

Example 19 For any a, b > 0

1. ln x = o(xa) and x = o(ebx) as x → ∞.

2. | lnx| = o(x−a) and x−1 = o(e
b
x ) as x → 0+.

Example 20 Suppose f(x) is differentiable at x0 and let L(x) = f(x0) + f ′(x0)(x − x0) be
the linear approximation of f at x0. Then

1. f(x) − L(x) = o(x − x0) as x → x0.

2. If in addition, f has continuous second derivative near x0 (therefore f ′′ is bounded near
x0), then f(x) − L(x) = O(|x− x0|2) as x → x0.

Example 21 If f(x) = o(g(x)), then f(x) = O(g(x)), but not vice versa.

Example 22 If f(x) = O(|x − x0|2) as x → x0 then f(x) = O(x − x0) as x → x0, but not
vice versa.

Example 23 If f(x) = O(1) as x → ∞ then f(x) = O(x) as x → ∞, but not vice versa.
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Inverse Trigonometric Functions and Their Derivatives

One of the main issue in defining inverse trigonometric functions is to restrict the domains of
the original trigonometric functions. We truncate the domain for each of the trigonometric
function so that the restricted function is one-to-one and maps to the same range as the
un-restricted trigonometric functions.

Clearly, there are more than one way of truncating the domain to achieve the requirement.
We summarize below the conventional way of restriction for the trigonometric functions.

Proposition 8 The following restricted trigonometric functions are one-to-one and maps
onto the same range as the un-restricted ones

1. sin : x ∈ [−π
2
, π

2
] 7−→ y ∈ [−1, 1].

2. cos : x ∈ [0, π] 7−→ y ∈ [−1, 1].

3. tan : x ∈ (−π
2
, π

2
) 7−→ y ∈ R.

4. cot : x ∈ (0, π) 7−→ y ∈ R.

5. sec : x ∈ [0, π
2
) ∪ (π

2
, π] 7−→ y ∈ (−∞,−1] ∪ [1,∞).

6. csc : x ∈ [−π
2
, 0) ∪ (0, π] 7−→ y ∈ (−∞,−1] ∪ [1,∞).

As a corollary, the conventional domain and range for inverse trigonometric functions are
given by

Corollary 1 Domains and ranges of inverse trigonometric functions:

1. sin−1 : y ∈ [−1, 1] 7−→ x ∈ [−π
2
, π

2
].

2. cos−1 : y ∈ [−1, 1] 7−→ x ∈ [0, π].

3. tan−1 : y ∈ R 7−→ x ∈ (−π
2
, π

2
).

4. cot−1 : y ∈ R 7−→ x ∈ (0, π).

5. sec−1 : y ∈ (−∞,−1] ∪ [1,∞) 7−→ x ∈ [0, π
2
) ∪ (π

2
, π].

6. csc−1 : y ∈ (−∞,−1] ∪ [1,∞) 7−→ x ∈ [−π
2
, 0) ∪ (0, π].

For example, if y ∈ [−1, 1] and x = sin−1 y, then x is the unique element in [−π
2
, π

2
] that

satisfies sin x = y, etc.

Example 24 For trigonometric and inverse trigonometric functions, the identity f−1(f(x)) =
x may NOT hold for all x ∈ R.

1. cos(cos−1(2π
3

)) =?

2. cos(cos−1(−2π
3

)) =?
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The derivatives of inverse trigonometric function is given by the general formula

df−1(y)

dy
=

1
df(x)
dx

|x=f−1(y)

. (1)

We will see that the domains of inverse trigonometric functions plays an essential role in the
final step, namely expressing x in terms of y.

Example 25 For y ∈ (−1, 1) (for derivative of sin−1(y), we only need to consider y in the
interior of the domain [−1, 1]),

d sin−1 y

dy
=

1
d sinx

dx

=
1

cos x
=

1

±
√

1 − y2
=

1
√

1 − y2
.

Here we have used x = sin y in the third equality and selected the ′+′ sign in last equality
since cos x > 0 when x ∈ (−π

2
, π

2
), which corresponds to y ∈ (−1, 1).

Similarly, we can also derive easily that

d cos−1 y

dy
= − 1

√

1 − y2
, y ∈ (−1, 1),

d tan−1 y

dy
=

1

1 + y2
, y ∈ R,

and
d cot−1 y

dy
= − 1

1 + y2
, y ∈ R.

The next example is a little more complicated:

Example 26 For |y| > 1, we have

d sec−1 y

dy
=

1
d sec x

dx

=
1

sec x tanx
=

1

±y
√

y2 − 1
(2)

where we have used
tan x = ±

√

y2 − 1. (3)

We now decide the sign in (3) and (2). The range of sec−1 y, |y| > 1 is (consider interior
points only) x ∈ (0, π

2
) ∪ (π

2
, π). Moreover,

y > 1 ⇐⇒ x ∈ (0,
π

2
) ⇐⇒ tanx > 0 ⇐⇒ take ‘+’ in (3) (4)

y < −1 ⇐⇒ x ∈ (
π

2
, π) ⇐⇒ tan x < 0 ⇐⇒ take ‘-’ in (3) (5)

From (4,5), it is easy to see that ±y = |y| in (2) and we conclude that

d sec−1 y

dy
=

1

|y|
√

y2 − 1
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Similarly, we have
d csc−1 y

dy
= − 1

|y|
√

y2 − 1

The derivation is left as an exercise.
Using the chain rule, we can now compute the derivatives involving inverse trigonometric

functions

Example 27 1. d
dx

sin−1(x2) =

2. d
dx

tan−1(sin x) =
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Hyperbolic and Inverse Hyperbolic Functions and Their

Derivatives

Definition 3 Hyperbolic Functions

1. sinh x = ex−e−x

2

2. cosh x = ex+e−x

2

3. tanh x = sinh x
cosh x

= ex−e−x

ex+e−x

4. coth x = cosh x
sinh x

= ex+e−x

ex−e−x

5. sech x = 1
cosh x

= 2
ex+e−x

6. csch x = 1
sinhx

= 2
ex−e−x

It is easy to derive the derivatives of the six hyperbolic functions, which are somewhat
similar, but not the same as trigonometric functions:

Proposition 9 Derivatives of hyperbolic functions:

1. d
dx

sinh x = cosh x

2. d
dx

cosh x = sinh x

3. d
dx

tanh x = sech2 x

4. d
dx

coth x = − csch2 x

5. d
dx

sech x = − sech x tanhx

6. d
dx

csch x = − csch x coth x

By properly restricting the domains of hyperbolic functions, we can define the inverse hy-
perbolic functions:

Proposition 10 Domains and ranges of inverse hyperbolic functions:

1. sinh−1 : y ∈ R 7−→ x ∈ R.

2. cosh−1 : y ∈ [1,∞) 7−→ x ∈ [0,∞).

3. tanh−1 : y ∈ (−1, 1) 7−→ x ∈ R.

4. coth−1 : y ∈ (−∞,−1) ∪ (1,∞) 7−→ x ∈ (−∞, 0) ∪ (0,∞).

5. sech−1 : y ∈ (0, 1] 7−→ x ∈ [1,∞).

6. csch−1 : y ∈ (−∞, 0) ∪ (0,∞) 7−→ x ∈ (−∞, 0) ∪ (0,∞).
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Using (1) and the following identities

Proposition 11 1. cosh2 x − sinh2 x = 1

2. tanh2 x = 1 − sech2 x

3. coth2 x = 1 + csch2 x

we can also derive the derivatives of inverse trigonometric functions

Proposition 12 Derivatives of inverse hyperbolic functions:

1. d
dx

sinh−1 y = 1√
1+y2

, y ∈ R

2. d
dx

cosh−1 y = 1√
y2−1

, y > 1

3. d
dx

tanh−1 y = 1
1−y2 , y ∈ (−1, 1)

4. d
dx

coth−1 y = 1
1−y2 , y ∈ (−∞,−1) ∪ (1,∞)

5. d
dx

sech−1 y = − 1

y
√

1−y2
, y ∈ (0, 1)

6. d
dx

csch−1 y = − 1

|y|
√

1+y2
, y ∈ (−∞, 0) ∪ (0,∞)

The derivation of all the propositions in this section is left as an exercise.
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