
L'Hôpital's RuleTheorem 1 (L'Hôpital's Rule) Suppose that f(a) = g(a) = 0, that f 0(a) and g0(a) exist,and that g0(a) 6= 0. Then limx!a f(x)g(x) = f 0(a)g0(a) :
Example 6 limx!0 sinxx = limx!0 osx1 = 1Theorem 2 (Strong Form of L'Hôpital's Rule) Suppose that f(a) = g(a) = 0 and thatf and g are di�erentiable on (a� Æ; a+ Æ). Suppose also that g0(x) 6= 0 if x 6= a. Iflimx!a f 0(x)g0(x) = 8<: L1�1 ;Then limx!a f(x)g(x) = limx!a f 0(x)g0(x) :Hint: Theorem 2 an be derived easily (at least when the above limit is L), given thefollowingTheorem 3 Cauhy's Mean Value Theorem Suppose f and g are ontinuous on [a; b℄ anddi�erentiable on (a; b), then there exists  2 (a; b) suh that���� f(b)� f(a) f 0()g(b)� g(a) g0() ���� = 0:Hint: Apply standard Mean Value Theorem toF (x) = ���� f(b)� f(a) f(x)� f(a)g(b)� g(a) g(x)� g(a) ���� on [a; b℄:
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Example 7 limx!0 x�sinxx3 =Remark 1 Under the same assumption above, if limx!a f 0(x)g0(x) does not exist, it does NOTimply that limx!a f(x)g(x) = limx!a f 0(x)g0(x) = non-existent :Instead, L'Hôpital's Rule gives no onlusion in this ase.Example 8 limx!0 x2 os 1xsinx =Hint: L'Hôpital's Rule in inonlusive, use sandwih Theorem instead.
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Variants of L'Hôpital's Rule (see the sanned referene for detail)1. The one sided limit version.2. The 11 version.3. The limx!1 versions.In short, whenever you have a inde�nite ratio of the form 00 or 11 , you an simplydi�erentiate both the denominator and the enumerator until you get a limit (either �nite orin�nite).Inde�nite Di�erenes and Produts: 1�1 and 0 � 1Example 9 1. limx!0+( 1sinx � 1x) =2. limx!1 x�px2 + x =Remark 2 The hoie of writing 0 �1 as 00 or 11 often makes a tehnial di�erene, as thefollowing example shows:Example 10 limx!0+ 1x � e�1x = limx!0+ e�1xx = limx!0+ xe 1xWhih one is better?Intermediate Powers 11, 00 and 10Example 11 1. limx!0+ x 1x =2. limx!1 x 1x =3. limx!0+ xx =4. limx!0+(1 + ax) bx =Hint: always use the trik xy = (elnx)y = (ey lnx) and ontinuity of the exponential funtion:elimf(x) = lim ef(x).
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Relative Rates of Growth, small o and Big ODe�nition 1 (small o) f(x) = o(g(x)) as x ! a if limx!a f(x)=g(x) = 0. One an simi-larly de�ne the ase for x!1. This means that f(x) is genuinely \smaller" than g(x).De�nition 2 (Big O) f(x) = O(g(x)) as x ! a if jf(x)g(x) j is bounded (ie � M for someM > 0) for all x suÆiently lose to a (for all x large enough, in the x ! 1 ase). Thismeans that f(x) is \no larger" than g(x).Example 12 1. 10x� 1 = O(x) as x!1.2. ax2 + bx +  = O(x2) as x!1.3. 3x = O(px2 + 1) as x! anywhere. (Why?)Example 13 1. sin x = O(1) as x! anywhere. (Why?)2. sinx = o(1) as x! 0.3. sinx = O(x) as x! 0.Example 14 For any a; b > 01. lnx = o(xa) and x = o(ebx) as x!1.2. j lnxj = o(x�a) and x�1 = o(e bx ) as x! 0+.Example 15 Suppose f(x) is di�erentiable at x0 and let L(x) = f(x0) + f 0(x0)(x � x0) bethe linear approximation of f at x0. Then1. f(x)� L(x) = o(x� x0) as x! x0.2. If in addition, f has ontinuous seond derivative near x0 (therefore f 00 is bounded nearx0), then f(x)� L(x) = O(jx� x0j2) as x! x0.Example 16 If f(x) = o(g(x)), then f(x) = O(g(x)), but not vie versa.Example 17 If f(x) = O(jx� x0j2) as x ! x0 then f(x) = O(x� x0) as x ! x0, but notvie versa.Example 18 If f(x) = O(1) as x!1 then f(x) = O(x) as x!1, but not vie versa.
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Inverse Trigonometri Funtions and Their DerivativesOne of the main issue in de�ning inverse trigonometri funtions is to restrit the domains ofthe original trigonometri funtions. We trunate the domain for eah of the trigonometrifuntion so that the restrited funtion is one-to-one and maps to the same range as theun-restrited trigonometri funtions.Clearly, there are more than one way of trunating the domain to ahieve the requirement.We summarize below the onventional way of restrition for the trigonometri funtions.Proposition 7 The following restrited trigonometri funtions are one-to-one and mapsonto the same range as the un-restrited ones1. sin : x 2 [��2 ; �2 ℄ 7�! y 2 [�1; 1℄.2. os : x 2 [0; �℄ 7�! y 2 [�1; 1℄.3. tan : x 2 (��2 ; �2 ) 7�! y 2 R.4. ot : x 2 (0; �) 7�! y 2 R.5. se : x 2 [0; �2 ) [ (�2 ; �℄ 7�! y 2 (�1;�1℄ [ [1;1).6. s : x 2 [��2 ; 0) [ (0; �℄ 7�! y 2 (�1;�1℄ [ [1;1).As a orollary, the onventional domain and range for inverse trigonometri funtions aregiven byCorollary 1 Domains and ranges of inverse trigonometri funtions:1. sin�1 : y 2 [�1; 1℄ 7�! x 2 [��2 ; �2 ℄.2. os�1 : y 2 [�1; 1℄ 7�! x 2 [0; �℄.3. tan�1 : y 2 R 7�! x 2 (��2 ; �2 ).4. ot�1 : y 2 R 7�! x 2 (0; �).5. se�1 : y 2 (�1;�1℄ [ [1;1) 7�! x 2 [0; �2 ) [ (�2 ; �℄.6. s�1 : y 2 (�1;�1℄ [ [1;1) 7�! x 2 [��2 ; 0) [ (0; �℄.For example, if y 2 [�1; 1℄ and x = sin�1 y, then x is the unique element in [��2 ; �2 ℄ thatsatis�es sin x = y, et.Example 19 For trigonometri and inverse trigonometri funtions, the identity f�1(f(x)) =x may NOT hold for all x 2 R.1. os(os�1(2�3 )) =?2. os(os�1(�2�3 )) =? 11



The derivatives of inverse trigonometri funtion is given by the general formuladf�1(y)dy = 1df(x)dx jx=f�1(y) : (1)We will see that the domains of inverse trigonometri funtions plays an essential role in the�nal step, namely expressing x in terms of y.Example 20 For y 2 (�1; 1) (for derivative of sin�1(y), we only need to onsider y in theinterior of the domain [�1; 1℄),d sin�1 ydy = 1d sinxdx = 1os x = 1�p1� y2 = 1p1� y2 :Here we have used x = sin y in the third equality and seleted the 0+0 sign in last equalitysine os x > 0 when x 2 (��2 ; �2 ), whih orresponds to y 2 (�1; 1).Similarly, we an also derive easily thatd os�1 ydy = � 1p1� y2 ; y 2 (�1; 1);d tan�1 ydy = 11 + y2 ; y 2 R;and d ot�1 ydy = � 11 + y2 ; y 2 R:The next example is a little more ompliated:Example 21 For jyj > 1, we haved se�1 ydy = 1d sexdx = 1se x tanx = 1�ypy2 � 1 (2)where we have used tan x = �py2 � 1: (3)We now deide the sign in (3) and (2). The range of se�1 y, jyj > 1 is (onsider interiorpoints only) x 2 (0; �2 ) [ (�2 ; �). Moreover,y > 1 () x 2 (0; �2 ) () tanx > 0 () take `+' in (3) (4)y < �1 () x 2 (�2 ; �) () tan x < 0 () take `-' in (3) (5)From (4,5), it is easy to see that �y = jyj in (2) and we onlude thatd se�1 ydy = 1jyjpy2 � 112



Similarly, we have d s�1 ydy = � 1jyjpy2 � 1The derivation is left as an exerise.Using the hain rule, we an now ompute the derivatives involving inverse trigonometrifuntionsExample 22 1. ddx sin�1(x2) =2. ddx tan�1(sinx) =

13



Hyperboli and Inverse Hyperboli Funtions and TheirDerivativesDe�nition 3 Hyperboli Funtions1. sinhx = ex�e�x22. osh x = ex+e�x23. tanh x = sinhxosh x = ex�e�xex+e�x4. oth x = osh xsinhx = ex+e�xex�e�x5. seh x = 1oshx = 2ex+e�x6. sh x = 1sinhx = 2ex�e�xIt is easy to derive the derivatives of the six hyperboli funtions, whih are somewhatsimilar, but not the same as trigonometri funtions:Proposition 8 Derivatives of hyperboli funtions:1. ddx sinh x = osh x2. ddx osh x = sinh x3. ddx tanh x = seh2 x4. ddx oth x = � sh2 x5. ddx seh x = � seh x tanhx6. ddx sh x = � sh x oth xBy properly restriting the domains of hyperboli funtions, we an de�ne the inverse hy-perboli funtions:Proposition 9 Domains and ranges of inverse hyperboli funtions:1. sinh�1 : y 2 R 7�! x 2 R.2. osh�1 : y 2 [1;1) 7�! x 2 [0;1).3. tanh�1 : y 2 (�1; 1) 7�! x 2 R.4. oth�1 : y 2 (�1;�1) [ (1;1) 7�! x 2 (�1; 0) [ (0;1).5. seh�1 : y 2 (0; 1℄ 7�! x 2 [1;1).6. sh�1 : y 2 (�1; 0) [ (0;1) 7�! x 2 (�1; 0) [ (0;1).14



Using (1) and the following identitiesProposition 10 1. osh2 x� sinh2 x = 12. tanh2 x = 1� seh2 x3. oth2 x = 1 + sh2 xwe an also derive the derivatives of inverse trigonometri funtionsProposition 11 Derivatives of inverse hyperboli funtions:1. ddx sinh�1 y = 1p1+y2 ; y 2 R2. ddx osh�1 y = 1py2�1 ; y > 13. ddx tanh�1 y = 11�y2 ; y 2 (�1; 1)4. ddx oth�1 y = 11�y2 ; y 2 (�1;�1) [ (1;1)5. ddx seh�1 y = � 1yp1�y2 ; y 2 (0; 1)6. ddx sh�1 y = � 1jyjp1+y2 ; y 2 (�1; 0) [ (0;1)The derivation of all the propositions in this setion is left as an exerise.
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