L’Hopital’s Rule
Theorem 1 (L’Hépital’s Rule) Suppose that f(a) = g(a) =0, that f'(a) and ¢'(a) exist,
and that ¢'(a) # 0. Then
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Example 6 lim,_,o ** = lim,_,o =3

Theorem 2 (Strong Form of L’Hépital’s Rule) Suppose that f(a) = g(a) = 0 and that
f and g are differentiable on (a — d,a + 3). Suppose also that ¢'(z) # 0 if x # a. If
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Hint: Theorem 2 can be derived easily (at least when the above limit is L), given the
following

Theorem 3 Cauchy’s Mean Value Theorem Suppose f and g are continuous on [a,b] and
differentiable on (a,b), then there exists ¢ € (a,b) such that
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Hint: Apply standard Mean Value Theorem to
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Remark 1 Under the same assumption above, if lim,_,, L@ does not exist, it does NOT
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imply that
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Instead, L’Hopital’s Rule gives no conclusion in this case.
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Example 8 lim,_,
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Hint: I’Hopital’s Rule in inconclusive, use sandwich Theorem instead.



Variants of L’Hopital’s Rule (see the scanned reference for detail)

1. The one sided limit version.

2. The % version.

3. The lim,_,,, versions.

In short, whenever you have a indefinite ratio of the form % or 2, you can simply
differentiate both the denominator and the enumerator until you get a limit (either finite or
infinite).

Indefinite Differences and Products: co — oc and 0 - o0

Example 9 1. lim, o+ (5~ — 1) =

sin T

2. limy oo — V2 4+ 2 =

Remark 2 The choice of writing 0-0c as 2 or 22 often makes a technical difference, as the

0
following example shows:

Example 10

. -1 .
im —-e= = lim
=0t T =0t X z—0t o3

Which one is better?
Intermediate Powers 1°°, 0° and oo’
Example 11 1. lim,_,o+ T =

2. limmﬁoom% =

3. lim$%g+ zt =

h

4. llmmg)o-k(]_ —|—(],7/‘) =

B

Hint: always use the trick 2 = (¢ %) = (¢#""?) and continuity of the exponential function:



Relative Rates of Growth, small o and Big O

Definition 1 (small 0) f(z) = o(g(z)) as x — a if lim,,, f(2)/g9(x) = 0. One can simi-
larly define the case for x — o0o. This means that f(x) is genuinely “smaller” than g(x).

Definition 2 (Big O) f(z) = O(g(z)) as x — a if \583\ is bounded (ie < M for some

M > 0) for all x sufficiently close to a (for all x large enough, in the x — oo case). This
means that f(x) is “no larger” than g(z).

Example 12 1. 102 —1=0(z) as © — oc.
2. ar® 4+ bx + ¢ = O(2?) as v — oc.
3. 3z =O0(Va?+1) as © — anywhere. (Why?)
Example 13 1. sinz = O(1) as x — anywhere. (Why?)
2. sinz = o(1) as x — 0.

3. sinz = O(x) as x — 0.
Example 14 For any a,b > 0
1. Inz = o(2%) and x = o(e®) as x — oc.
2. |Inz| =o(z ™) and 2 = o(es) as x — 0F,

Example 15 Suppose f(x) is differentiable at xo and let L(x) = f(x¢) + f'(20)(x — x0) be
the linear approximation of f at xy. Then

1. f(z) — L(z) = o(x — z¢) as x — xy.

2. If in addition, f has continuous second derivative near xq (therefore f" is bounded near
1y), then f(z) — L(z) = O(|x — x4]?) as © — zy.

Example 16 If f(z) = o(g(x)), then f(x) = O(g(x)), but not vice versa.

Example 17 If f(x) = O(|x — x0|?) as v — xq then f(x) = O(x — xq) as © — xg, but not
vice Versa.

Example 18 If f(z) = O(1) as © — oo then f(z) = O(z) as x — oo, but not vice versa.
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Inverse Trigonometric Functions and Their Derivatives

One of the main issue in defining inverse trigonometric functions is to restrict the domains of
the original trigonometric functions. We truncate the domain for each of the trigonometric
function so that the restricted function is one-to-one and maps to the same range as the
un-restricted trigonometric functions.
Clearly, there are more than one way of truncating the domain to achieve the requirement.
We summarize below the conventional way of restriction for the trigonometric functions.

Proposition 7 The following restricted trigonometric functions are one-to-one and maps
onto the same range as the un-restricted ones

1. sin:ze[-3, 5] —ye[-1,1].

2. cos:x €0, m]r—ye[-1,1].

3 tan:z € (=5, 5) >y R

4. cot:zx e (0,m)—yeR

5. sec:x €[0,5)U (5, 1] ——y € (—o0, ~1JU[1, 00).
6. csc:x €[5 0)U (0,7 — y € (—oo,—1] U1, 00).

As a corollary, the conventional domain and range for inverse trigonometric functions are
given by

Corollary 1 Domains and ranges of inverse trigonometric functions:

.1 T T
1sin " :ye[-11r—a2e[-5, 5]

cos 'y €e[-1,1]— z €[0,7].

).

1

tan~':y e R+-— 2z € (-3,

B

cot 7'y e R+—x € (0,m).

sec iy € (—oo, —1JU[l,00) —> 2 € [0,%) U (5, 7].
6. csc™' iy € (—oo, —1]U[1,00) —> z € [-5,0) U (0,7].

For example, if y € [-1,1] and 2 = sin” 'y, then z is the unique element in [—5, 5] that
satisfies sinx = y, etc.

Example 19 For trigonometric and inverse trigonometric functions, the identity f~'(f(x)) =
x may NOT hold for all x € R.

1. cos(cos (&) =7

2. cos(cos™'(—%)) =7
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The derivatives of inverse trigonometric function is given by the general formula

df ' (y) 1

— . 1)
df (z (
dy d(.,) |:1::f’1(y)

We will see that the domains of inverse trigonometric functions plays an essential role in the
final step, namely expressing x in terms of y.

Example 20 Fory € (—1,1) (for derivative of sin™'(y), we only need to consider y in the
interior of the domain [—1,1]),

dsin 'y 1 1 1 1
dy s cosw +y/1 92 /1 g2

Here we have used x = siny in the third equality and selected the '+' sign in last equality

since cost > 0 when x € (—7%, §), which corresponds to y € (—1,1).

Similarly, we can also derive easily that

dcos ™! 1
Y = - 3 Yy e (_17 1)7
dy 1—y?
dtan™'y 1 cR
dy - 1 + y27 y 9
and
dcot ™ty B 1 cR
dy 1+ ST
The next example is a little more complicated:
Example 21 For |y| > 1, we have
dsec’'y 1 1 - 1 @)
dy 7%7secxtanxiiy y? — 1
where we have used
tanx = £4/y? — 1. (3)

We now decide the sign in (3) and (2). The range of sec™'y, |y| > 1 is (consider interior
points only) v € (0,3) U (5, 7). Moreover,

y>1 <= z¢€ (O,g) < tanz >0 < take ‘+ in (3) (4)

y< -1 <= x¢€ (g,’ﬂ') < tanz <0 <= take “"in (3) (5)

From (4,5), it is easy to see that +y = |y| in (2) and we conclude that

dsec 'y 1

dy  lyly/y? 1
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Similarly, we have

dese ly B 1

dy V-1

The derivation is left as an exercise.
Using the chain rule, we can now compute the derivatives involving inverse trigonometric

functions

Example 22 1. Lgin"'(2?) =

2. L tan"'(sinz) =
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Hyperbolic and Inverse Hyperbolic Functions and Their
Derivatives

Definition 3 Hyperbolic Functions

1. sinhz =

2

xT — T

2. coshz = %
__ sinhx _ e*—e 7
3. tanhz = cosb e = ayes

4. cothy = wshe _ el+e?

sinh z er—e~?
- 1 _ 2

9. seche = = = ==
- _1 _ 2

6. cschr = —— = ==

It is easy to derive the derivatives of the six hyperbolic functions, which are somewhat
similar, but not the same as trigonometric functions:

Proposition 8 Derivatives of hyperbolic functions:

1. di sinh z = cosh z
T
2. di cosh x = sinh z
T
3 % tanh 2 = sech?
4. di cothz = —csch? z
T
) % sech z = —sech xz tanh z
6. % cschz = —csch 2z coth x

By properly restricting the domains of hyperbolic functions, we can define the inverse hy-
perbolic functions:

Proposition 9 Domains and ranges of inverse hyperbolic functions:
1. sinh ':ye R— 2z R
2. cosh™' 1y €[1,00) = z € [0, 00).
8. tanh':ye€ (-1,1)—z R
4. coth™' sy € (—oc, ~1)U(1,00) = 2 € (—oc,0) U (0, 00).
5 sech™' 1y € (0,1] — 2 € [1,00).
(

6. csch™' 1y € (—00,0) U (0,00) — 2 € (—00,0) U (0, 00).
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Using (1) and the following identities
Proposition 10 1. cosh?z —sinh?z = 1
2. tanh®’x =1 — sech® x
3. coth’?z =1+ csch®z
we can also derive the derivatives of inverse trigonometric functions

Proposition 11 Derivatives of inverse hyperbolic functions:

1. %Sinh*]y:\/#, yeR

2. %cosh’ly:ﬁ, y>1

3. %tanhfly = ]fyz, y€(-11)

4. L coth 'y = lny, y € (—oo,—1) U (1, 00)
5. Lsech 'y = ——A— y e (0,1)

yy/1-92’

-1 1
6. L csch Yy=——">
e ' VAR

The derivation of all the propositions in this section is left as an exercise.

y € (—00,0) U (0,00)
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