Brief solutions to selected problems in homework 04

1. Section 3.5: Solutions, common mistakes and corrections:

Problem 58:

Continuity: We have $\lim_{x\to 0^+} g(x) = g(0) = 1$ and $\lim_{x\to 0^-} g(x) = b$. Therefore $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} g(x) = g(0)$ implies g is continuous at x=0 if and only if b=1.

Differentiability: $\lim_{x\to 0^+} \frac{g(x)-g(0)}{x-0} = 0$, $\lim_{x\to 0^-} \frac{g(x)-g(0)}{x-0} = 1$ for any $b\in\mathbb{R}$, therefore $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0}$ does not exist. g is not differentiable at x=0 for any $b\in\mathbb{R}$.

2. Problem 2:

(a): Yes, since
$$\lim_{x\to 0} f(x) = f(0) = 1$$
.

(b): We show that
$$\lim_{x\to 0} \frac{d}{dx} \left(\frac{\sin x}{x} \right) = 0.$$

$$\frac{d}{dx}\left(\frac{\sin x}{x}\right) = \frac{x\cos x - \sin x}{x^2} = \frac{\cos x - \frac{\sin x}{x}}{x}.$$

From the inequality (page 104 of the textbook)

$$1 > \frac{\sin x}{x} > \cos x, \quad \text{on } 0 < x < \frac{\pi}{2},$$

which also holds for $0 > x > \frac{-\pi}{2}$ (since both $\frac{\sin x}{x}$ and $\cos x$ are even functions), we see that if $0 < |x| < \frac{\pi}{2}$, then

$$\left| \frac{d}{dx} \left(\frac{\sin x}{x} \right) \right| = \left| \frac{\cos x - \frac{\sin x}{x}}{x} \right| = \frac{\frac{\sin x}{x} - \cos x}{|x|} < \frac{1 - \cos x}{|x|} = \frac{2\sin^2 \frac{x}{2}}{|x|} < \frac{2\left(\frac{x}{2}\right)^2}{|x|} = \frac{|x|}{2}$$

Overall, we have

$$0 \le \left| \frac{d}{dx} \left(\frac{\sin x}{x} \right) \right| < \frac{|x|}{2}, \quad \text{on } 0 < |x| < \frac{\pi}{2}.$$

Since $\lim_{x\to 0} \frac{|x|}{2} = 0$, it follows from the Sandwich Theorem that $\lim_{x\to 0} \left| \frac{d}{dx} \left(\frac{\sin x}{x} \right) \right| = 0$, and therefore $\lim_{x\to 0} \frac{d}{dx} \left(\frac{\sin x}{x} \right) = 0$.

The proof for
$$f'(0) = \lim_{x\to 0} \frac{\frac{\sin x}{x} - 1}{x - 0} = 0$$
 is similar.

3. Problem 4:

Ans:
$$= f'(g(2)) \cdot g'(2) = f'(3) \cdot g'(2) = 0.4$$

4. Section 3.7: Solutions, common mistakes and corrections:

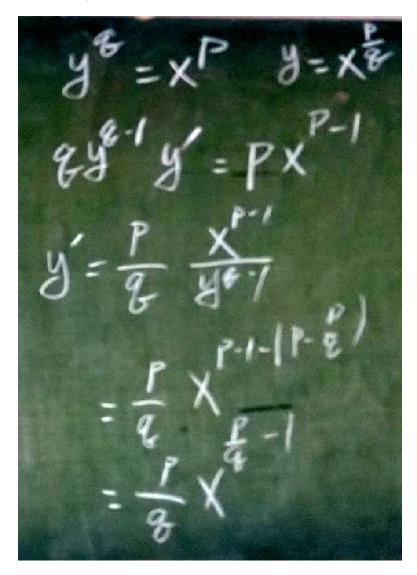


Figure 1: Solution to Section 3.7, problem 48

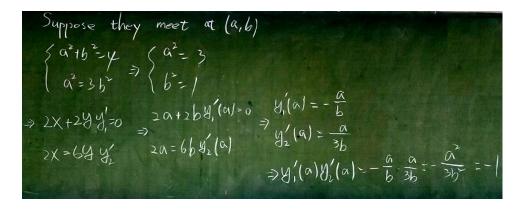


Figure 2: Solution to Section 3.7, problem 51(a)