Brief solutions to selected problems in homework 03

1. Section 2.6: Solutions, common mistakes and corrections:

Soc 2.6

61. For any M >0, take
$$\delta = \left(\frac{1}{M}\right)^{\frac{3}{2}} > 0$$
 s.t.

(a) If $0 < x < \delta$ then $f(x) \ge \frac{1}{x^{\frac{3}{2}}} > \frac{1}{\delta^{\frac{3}{2}}} = M$

(b) If $0 < x < \delta$ then $f(x) \ge \frac{1}{x^{\frac{3}{2}}} > \frac{1}{\delta^{\frac{3}{2}}} = M$

(c) If $0 < x < \delta$ then $f(x) \ge \frac{1}{(x - 1)^{\frac{3}{2}}} > \frac{2}{\delta^{\frac{3}{2}}} = 2M$

(d) If $0 < 1 - x < \delta$ then $f(x) \ge \frac{2}{(x - 1)^{\frac{3}{2}}} > \frac{2}{\delta^{\frac{3}{2}}} = 2M$

85. $\lim_{x \to \infty} \left(|x^{\frac{3}{2}} + x| \right) = \lim_{x \to \infty} \frac{5x}{\sqrt{x^{\frac{3}{2}}} + \sqrt{x^{\frac{3}{2}}} + \sqrt{x^{\frac{3}{2}}} } = \frac{2M}{x^{\frac{3}{2}}} > M$

85. $\lim_{x \to \infty} \left(|x^{\frac{3}{2}} + x| \right) = \lim_{x \to \infty} \frac{5x}{\sqrt{x^{\frac{3}{2}}} + \sqrt{x^{\frac{3}{2}}} + \sqrt{x^{\frac{3}{2}}} } = \frac{2M}{x^{\frac{3}{2}}} > M$

86. $\lim_{x \to \infty} \left(|x^{\frac{3}{2}} + x| \right) = \lim_{x \to \infty} \frac{5x}{\sqrt{x^{\frac{3}{2}}} + \sqrt{x^{\frac{3}{2}}} + \sqrt{x^{\frac{3}{2}}} } = \frac{2M}{x^{\frac{3}{2}}} > M$

87. For any M>0, take $\delta = \sqrt{\frac{1}{M}} > 0$,

88. $\lim_{x \to \infty} \left(|x^{\frac{3}{2}} + x| \right) = \frac{5}{x^{\frac{3}{2}}} = 2M$

89. For any M>0, take $\delta = \sqrt{\frac{1}{M}} > 0$,

89. $\lim_{x \to \infty} \left(|x^{\frac{3}{2}} + x| \right) = \frac{5}{x^{\frac{3}{2}}} = 2M$

90. $\lim_{x \to \infty} \left(|x^{\frac{3}{2}} + x| \right) = \frac{5}{x^{\frac{3}{2}}} = 2M$

91. $\lim_{x \to \infty} \left(|x^{\frac{3}{2}} + x| \right) = \frac{5}{x^{\frac{3}{2}}} = 2M$

92. For any M>0, take $\delta = \sqrt{\frac{1}{M}} > 0$,

93. (a) $\lim_{x \to \infty} f(x) = \infty$ & For any M>0, there exists a $\delta > 0$, s.t.

10. $\lim_{x \to \infty} f(x) = -\infty$ & For any -M<0, there exists a $\delta > 0$ s.t.

11. $\lim_{x \to \infty} f(x) = -\infty$ & For any -M<0, there exists a $\delta > 0$ s.t.

12. $\lim_{x \to \infty} f(x) = -\infty$ & For any -M<0, there exists a $\delta > 0$ s.t.

13. $\lim_{x \to \infty} f(x) = -\infty$ & For any -M<0, there exists a $\delta > 0$ s.t.

14. $\lim_{x \to \infty} f(x) = -\infty$ & For any -M<0, there exists a $\delta > 0$ s.t.

15. $\lim_{x \to \infty} f(x) = -\infty$ & For any -M<0, there exists a $\delta > 0$ s.t.

16. $\lim_{x \to \infty} f(x) = -\infty$ & For any -M<0, there exists a $\delta > 0$ s.t.

Figure 1: Solution to selected problems in Section 2.6, part 1

95. For any-M<0, take
$$S = \frac{1}{M} > 0$$
 st.

If $-6 < X < 0$ then $\frac{1}{X} < \frac{1}{-5} = -M$

97. For any M>0, take $S = \frac{1}{M} > 0$ s.t.

If $0 < X - 2 < \delta$ then $\frac{1}{X - 2} > \frac{1}{\delta} = M$

Figure 2: Solution to selected problems in Section 2.6, part 2

Figure 3: Solution to Homework 03, problem 2

2. Section 3.2: Solutions, common mistakes and corrections:

Figure 4: Solution to Section 3.2, problem 58(a). Step 1: show that f(0) = 0. Step 2: show that f'(0) = 0 as in problem 58(b)

Figure 5: Common mistakes to Section 3.2, problem 58(a)

Figure 6: Solution to Section 3.2, problem 58(b)

3. Section 3.3: Solutions, common mistakes and corrections:

Figure 7: Solution to Section 3.3, problem 55

Figure 8: A trick for Section 3.3, problem 67

33(70)

$$f(x)$$
 is differentiable for all x -values, that, is, $f(x)$ is continuous on R .

 $\lim_{x \to -1} f(x) = \lim_{x \to -1} f(x) = f(-1)$
 $\Rightarrow -\alpha + b = b - 3$
 $\Rightarrow \alpha = 3 \times 6$
 $\Rightarrow \alpha = 2b - 3 \Rightarrow b = \frac{3}{2} \times 6$
 $\Rightarrow \alpha = -2b - 3 \Rightarrow b = \frac{3}{2} \times 6$

Figure 9: Solution to Section 3.3, problem 70

Figure 10: Solution to Homework 03, problem 5

Figure 11: Solution to Homework 03, problem 6